Hubungan Pencahayaan dan Postur Kerja serta Iklim Kerja dengan Keluhan Musculoskeletal Disosders pada Pekerja Bagian Helper di PT. Semarang Autocomp Manufacturing Indonesia (SAMI) Semarang

Relationship of Lighting Work Posture and Work Climate Against Complaints of Musculoskeletal Disosders in Helper Workers at PT SAMI

Setyo Watiningsih¹, Triyanta²., Nur Ani³ Program Studi Kesehatan Masyarakat, FKM Universitas Veteran Bangun Nusantara *Email*:setyo.watiningsih17@gmail.com

ABSTRACT

Musculoskeletal Disorders (MSDs) are a group of pathological conditions that affect the normal function of the smooth tissue of the musculoskeletal system which includes nerves, tendons, muscles, and supporting structures such as the intervertebral disc. The manual cable transfer activity at PT SAMI has the potential for the incidence of MSDs in its workers. Based on the results of research conducted by Octaviani (2017), inter-provincial bus driver workers in Bandar Lampung experienced MSDs complaints of 73.3%. The results of research also conducted by Fuady (2013) found that there is a relationship between work risk and MSDs in shoe craftsmen in the Small Industrial Village (PIK) of Milling, Cakung District, 2013. Meanwhile, according to research by Khoffiya et al (2019) there is a relationship between work climate and work posture. with MSDs complaints to baggage handling service workers at Kokapura Ahmad Yani Semarang. Based on the results of a preliminary study using a Nordic Body Map questionnaire involving 22 respondents, it was found that 45% of respondents experienced Musculoskeletal Disorders (MSDs).

The purpose of this study was to analyze the relationship between lighting and work posture and work climate with complaints of Musculoskeletal disorders at PT SAMI Semarang. This type of research uses descriptive quantitative methods with a cross sectional design approach. The study was conducted in September 2020. The population numbered 22 helper workers with the same sample size of 22 workers due to using the total sampling method. In data collection, researchers used the REBA Checksheet, Nordic Body Map (MSDs Complaint Data, subjective), Extech Instruments HT 30 Series Heatstress Meter (work climate data), and the LL Lutron series LM-810 Luxmeter (Lighting Data). Bivariate statistical analysis used Chi-Square test and multivariate analysis with logistic regression test.

The results showed lighting according to standard or> 300 lux 95.5%, moderate work posture as much as 54.5%, work climate according to TLV 95.5%, and employees experiencing 77.3% musculoskeletal disosder complaints. There was no correlation between lighting and musculoskeletal disosder complaints (p-value = 0.579, C = 0.118). There is a relationship between work posture and musculoskeletal disorders (p-value = 0.003, C = 0.583). There is no relationship between work climate and musculoskeletal disosder complaints (p-value = 0.579,

C = 0.118). The multivariate test results show that the most influential variable is work posture (OR = 2.008.089.806.039).

Companies must carry out socialization and active education to workers about how to work and work attitudes that are right in accordance with ergonomic principles. Provide workplace stretching exercise for 5 - 10 minutes before starting work and during breaks between work.

Keywords: Lighting, Work Posture, Work Climate, Complaints of Musculoskeletal Disorders

ABSTRAK

Musculoskeletal Disorders merupakan akumulasi cidera serta nyeri yang terjadi pada sistem muskuloskeletal yang ditandai oleh luka pada otot, tendon, kartilago, ligamen, rangka, sistem vaskular, dan saraf. Aktifitas Pemindahan kabel secara manual di PT. SAMI, memiliki potensi untuk kejadian MSDs pada pekerjanya. Berdasarkan hasil penelitian yang dilakukan oleh Octaviani (2017) bahwa pekerja sopir bus antar provinsi di Bandar Lampung mengalami keluhan MSDs sebesar 73,3 %. Hasil penelitian juga dilakukan oleh Fuady (2013) didapatkan bahwa ada hubungan antara risiko pekerjaan dengan MSDs pada pengrajin sepatu di Perkampungan Industri Kecil (PIK) Penggilingan Kecamatan Cakung 2013. Sedangkan menurut penelitian Khoffiya et al (2019) ada hubungan antara iklim kerja dan postur kerja dengan keluhan MSDs pada pekerja baggage handling service di Kokapura Ahmad Yani Semarang. Berdasarkan hasil studi pendahuluan menggunakan kuesioner Nordic Body Map yang melibatkan 22 responden, ditemukan 45% responden mengalami Musculoskeletal Disorders (MSDs).

Tujuan penelitian ini untuk menganalisis hubungan pencahayaan dan postur kerja serta iklim kerja dengan keluhan *Musculoskeletal disorders* di PT SAMI Semarang. Jenis penelitian menggunakan metode kuantitatif deskriptif dengan pendekatan desain *Cross Sectional*. Penelitian dilaksanakan pada bulan September 2020. Populasi berjumlah 22 orang pekerja *helper* dengan jumlah sampel sama 22 orang pekerja dikarenakan menggunakan metode total sampling. Pada pengumpulan data, peneliti menggunakan Checksheet REBA, *Nordic Body Map* (Data Keluhan MSDs, bersifat subjektif), *Heatstress Meter merk Extech Instruments Seri HT 30* (data iklim kerja), dan Luksmeter LT Lutron seri LM-810 (Data Pencahayaan). Analisis statistik bivariat menggunakan uji *Chi- Square* dan analisis multivariat dengan uji regresi logistik.

Hasil penelitian menunjukkan pencahayaan sesuai standar atau >300 lux 95,5%, postur kerja sedang sebanyak 54,5%, iklim kerja sesuai NAB 95,5%, dan karyawan mengalami keluhan *musculoskeletal disosder* 77,3%. Tidak ada hubungan pencahayaan dengan keluhan *musculoskeletal disosder* (p-value=0,579, C=0,118). Ada hubungan postur kerja dengan keluhan *musculoskeletal disosder* (p-value=0,003, C=0,583). Tidak ada hubungan iklim kerja dengan keluhan *musculoskeletal disosder* (p-value=0,579, C=0,118). Hasil uji multivariat menunjukkan bahwa variabel yang paling berpengaruh adalah postur kerja (OR=2.008.089.806,039).

Perusahaan harus melaksanakan sosialisasi dan edukasi aktif kepada pekerja

helper mengenai cara bekerja dan postur kerja yang tepat sesuai dengan prinsip ergonomi. Memberikan *exercise* selama 5 - 10 menit sebelum mulai pekerjaan dan saat istirahat disela – sela pekerjaan.

Kata kunci : Pencahayaan, Postur kerja, Iklim Kerja, Keluhan *Musculoskeletal Disorders*

PENDAHULUAN

Prevalensi global dari keluhan *musculoskeletal* (MSDs) adalah sebesar 8,4% pada tahun 2014. Pada survei yang dilakukan di Great Britain tercatat bahwa angka kejadian MSDs sebesar 41% dari angka kejadian PAK, dan diungkap bahwa MSDs menjadi 37% penyebab seseorang absen dalam pekerjaan (HSE, 2016). Sedangkan di Indonesia pada tahun 2013, angka prevalensi gangguan *musculoskeletal* berdasarkan gejala yang ada yaitu sebesar 24,7% (Kemenkes, 2013).

World Health Organization (WHO) tahun 2018 menyatakan bahwa kondisi musculoskeletal adalah penyebab tertinggi kedua di dunia, dengan nyeri punggung bawah menjadi penyebab utama kecacatan secara global. Studi Global Burden of Disease (GBD) memberikan bukti dampak kondisi musculoskeletal, menyoroti beban disabilitas yang signifikan yang terkait dengan kondisi ini. Sementara itu, prevalensi kondisi musculoskeletal bervariasi yaitu berdasarkan usia dan diagnosis, antara 20%-33% orang di dunia mengalami sakit karena kondisi musculoskeletal (WHO, 2018).

Di Negara Amerika Serikat, yang merupakan negara maju dalam industri manufaktur telah mencatat bahwa WMSDs (work related musculoskeletal disorders) menjadi penyebab utama penyakit akibat kerja dan kehilangan 846.000 hari kerja setiap tahun dengan total biaya pengobatan yang dikeluarkan mencapai \$20 milliar sampai \$43 milliar (Sari dan Rifai, 2019). Berdasarkan hasil survei Departemen Kesehatan RI menunjukkan bahwa sekitar 40,5% penyakit yang diderita pekerja berhubungan dengan pekerjaannya, gangguan kesehatan yang dialami pekerja menurut studi yang dilakukan terhadap 482 pekerja di 12 kabupaten/kota di Indonesia, umumnya berupa gangguan MSDs (16%), kardiovaskuler (8%), gangguan syaraf (6%), gangguan pernafasan (3%) dan gangguan THT (1.5%) (Sari dan Rifai, 2019).

*Musculoskeletal Disorder*s merupakan akumulasi cedera serta nyeri yang terjadi pada sistem muskuloskeletal yang ditandai oleh luka pada otot, tendon, kartilago, ligamen, rangka, sistem vaskular, dan saraf (Batham dan Yasobant 2016). Selain itu, gangguan MSDs disebabkan dan diperburuk oleh pekerjaan, lingkungan kerja, serta kinerja dalam melakukan pekerjaan (Mutiah, 2013).

Terdapat banyak faktor penyebab terjadinya MSDs serta faktor risiko yang berkaitan dengan pekerjaan, termasuk faktor fisik, ergonomis dan psikososial. Beberapa faktor risiko yang dapat menimbulkan keluhan *musculoskeletal* diantaranya adalah faktor pekerjaan, karakteristik individu dan faktor lingkungan. Faktor pekerjaan yaitu gaya atau beban, postur kerja, frekuensi, gerakan berulangulang, durasi kerja, dan stress mekanik. Faktor lingkungan merupakan segala kondisi atau paparan ditempat kerja yang dapat menimbulkan *musculoskeletal disorders* diantaranya adalah suhu, getaran, tekanan dan pencahayaan. Karakter

individu meliputi jenis kelamin, umur, antropometri, status kesehatan, gizi, kebiasaan merokok dan kesegaran jasmani (Khoffiya *et al.*, 2019).

Faktor pekerjaan seperti postur janggal lebih banyak disebabkan adanya ketidaksesuaian antara dimensi alat dan stasiun kerja dengan ukuran tubuh pekerja. Sektor industri masih banyak yang melakukan pekerjaan secara manual dan memerlukan tuntutan serta tekanan secara fisik yang berat. Pemindahan satu barang dari satu tempat ke tempat lain merupakan salah satu aktivitas yang sering dilakukan oleh manusia, terdapat beberapa faktor yang dapat menyebabkan terjadinya keluhan *musculoskeletal* antara lain peregangan otot yang berlebihan, aktivitas berulang dan postur tubuh janggal (Tarwaka, 2015).

Selain itu, dari faktor lingkungan kerja seperti paparan suhu juga berpengaruh pada produktivitas kerja. Perbedaan suhu lingkungan dan tubuh yang terlalu signifikan bisa menyebabkan sebagian energi yang ada dalam tubuh terkuras untuk beradaptasi dengan kondisi tersebut. Kekurangan energi yang terjadi dapat menimbulkan rasa nyeri otot akibat proses metabolisme karbohidrat yang terhambat dan menyebabkan terjadinya penimbunan asam laktat pada otot. Penimbunan asam laktat yang berlebihan menyebakan kaku dan/atau nyeri pada otot. Jika kondisi ini terjadi berulang dalam waktu lama, akan menyebabkan gangguan MSDs pada pekerja (Tarwaka, 2015).

Pencahayaan saat bekerja juga dapat mempengaruhi postur tubuh. Bekerja dalam kondisi cahaya yang buruk akan membuat tubuh beradaptasi untuk mendekati cahaya. Hal itu jika terjadi dalam waktu yang lama akan menimbulkan postur tubuh janggal seperti membungkuk kemudian meningkatkan tekanan pada otot (Asali *et al.*, 2017).

Berdasarkan hasil penelitian yang dilakukan oleh Octaviani (2017) bahwa pekerja sopir bus antar provinsi di Bandar Lampung mengalami keluhan MSDs sebesar 73,3 %. Keluhan MSDs sebagian besar berada pada bagian punggung bawah, betis, bahu, lutut dan leher. Tingkat risiko pekerja terbanyak menurut skoring REBA vaitu risiko sedang sebesar 66,2%. Hasil penelitian juga dilakukan oleh Fuady (2013) didapatkan bahwa ada hubungan antara risiko pekerjaan dengan MSDs pada pengrajin sepatu di Perkampungan Industri Kecil (PIK) Penggilingan Kecamatan Cakung 2013. Sebagian besar pengrajin mengalami keluhan MSDs pada bagian pinggang (14,02 %), leher bagian atas (8,88 %) dan bahu kanan (8,88%). Tingkat keluhan berat (18,75 %) maupun keluhan ringan (13,95 %) paling banyak terjadi pada bagian pinggang. Penelitian Fausiyah (2017) mengatakan bahwa sebagian besar pekerja perakitan Minibus di PT. Mekar Armada Jaya Magelang mengalami keluhan MSDs tingkat risiko sedang sebesar 55,4%. Sedangkan hasil penelitiannya menunjukkan ada hubungan yang signifikan dan kuat antara paparan iklim kerja dan keluhan MSDs. Hal ini sejalan dengan penelitian yang dilakukan oleh Kristiyaningsih (2019) terhadap pekerja bagian spinning PT. BMSTI Sragen yang menyatakan hubungan signifikan antara postur kerja dengan keluhan *musculoskeletal disorder*. Sedangkan menurut penelitian Khoffiya et al (2019) ada hubungan antara iklim kerja dan postur kerja dengan keluhan MSDs pada pekerja baggage handling service di Kokapura Ahmad Yani Semarang.

PT. Semarang Autocomp Manufacturing Indonesia (SAMI) merupakan perusahaan PMA (Penanaman Modal Asing) asal Jepang yang telah beroperasi selama 18 tahun hingga saat ini. PT. SAMI merupakan perusahaan yang bergerak

dibidang *manufacturing* dalam hal perakitan kabel pada *body* mobil atau yang sering disebut *wiring harness* dan sekarang telah memiliki 1 cabang di Jepara (Sumber: Data Sekunder, 2020).

Berdasarkan hasil survei pendahuluan yang dilakukan melalui wawancara dengan Supervisor HR PT. SAMI diketahui bahwa sering terjadi absenteisme pada pekerja bagian *helper* akibat keluhan *musculoskeletal* yang dialami oleh para pekerja. Terdapat pula pemindahan pekerja *helper* ke bidang lain akibat ketidakmampuan pekerja untuk melanjutkan pekerjaannya sebagai *helper*. Selain itu, berdasarkan wawancara dengan 5 pekerja *helper* didapatkan hasil bahwa 100% dari total pekerja yang diwawancarai mengalami keluhan nyeri pada punggung, lengan dan bahu (Sumber: Data Primer, 2020).

Berdasarkan hasil observasi, semua pekerja bagian *helper* PT. SAMI berjenis kelamin laki-laki. Sebagian besar pekerja merupakan perokok dengan masa kerja yang bervariasi. Pada pekerjaan di bagian *helper*, aktivitas mengangkat dan mengangkut dilakukan secara manual. Aktivitas angkat-angkut manual yaitu memindahkan beban berupa 1 gulungan kabel dari rak penyimpanan dipindahkan ke mesin *autocutting* yang berjarak rata-rata 1- 2 meter. Frekuensi pengangkatan satu gulung kabel bisa mencapai 15- 25 kali dengan beban yang bervariasi sekitar 25-30 kg dalam 8 jam sehari, jumlah jam kerja bertambah jika pekerja melakukan lembur sebanyak 2 jam sehari. Kemudian PT. SAMI belum pernah melakukan pemeriksaan kesehatan terkait gangguan skeletal pada pekerja ataupun memberikan pelatihan terkait faktor-faktor risiko dan pencegahan MSDs. Perusahaan juga belum pernah melakukan identifikasi terhadap masalah-masalah ergonomi yang dirasakan pekerja, sehingga perlu dilakukan analisis awal keluhan MSDs yang dirasakan oleh pekerja (Sumber: Data Sekunder, 2020).

Berdasarkan dari data klinik, PT. SAMI mendapat rata-rata sejumlah 10 pengaduan mengenai keluhan nyeri tulang belakang (*Musculoskeletal Disosders*) pada pekerja bagian *helper* sedangkan untuk pekerja di area lain lebih sedikit rata-rata 3-5 pengaduan. Pada pengukuran awal suhu ruangan pada tanggal 8 Juni 2020 pukul 11.30 WIB di PT. SAMI menunjukkan iklim kerja dalam ruangan sebesar 28,2°C dan bisa bertambah pada siang hari. Menurut Peraturan Menteri Tenaga Kerja No 5 Tahun 2018 tentang K3 Lingkungan Kerja, suhu ruangan yang nyaman harus dipertahankan dengan ketentuan suhu kering 23-26°C. Sedangkan untuk pengukuran pencahayaan didapatkan sebesar 283 lux yaitu kurang dari standar. Berdasarkan pengamatan awal pekerja pada 10 pekerja *helper* mengalami keluhan pegal-pegal lengan atas, lengan bawah, pergelangan, punggung, kaki dan juga bahu. Keluhan bertambah berat ketika malam hari dan pagi hari saat bangun tidur (Sumber data primer, 2020).

Oleh karena itu, peneliti tertarik untuk mengadakan penelitian mengenai "hubungan pencahayaan dan postur kerja serta iklim kerja dengan keluhan *musculoskeletal disosders* pada pekerja bagian *helper* di PT. Semarang Autocomp Manufacturing Indonesia (SAMI) Semarang".

METODE

Jenis penelitian menggunakan deskripsi kuantatif dengan pendekatan *cross sectional*, yaitu suatu penelitian yang mempelajari dinamika korelasi antara faktorfaktor risiko dengan efek, dengan cara observasi dan pengumpulan data sekaligus pada suatu saat. PT. Semarang Autocomp Maufacturing Indonesia (SAMI) yang

beralamatkan di Jalan Walisongo KM 9.8, Kelurahan Tugurejo, Tugu, Semarang, Jawa Tengah. Penelitian dilakukan pada bulan September 2020. Populasi pada penelitian ini adalah karyawan PT. SAMI bagian

produksi helper yang mengangkat gulungan kabel. Jumlah populasi adalah 22 orang. Teknik pengambilan sampel yang digunakan dalam penelitian ini adalah total sampling yaitu semua populasi dijadikan sampel penelitian. Sampel pada penelitian ini adalah karyawan PT. SAMI yang bekerja di bagian helper. Jumlah total sampel yang diambil adalah 22 orang yang bekerja di bagian helper. Variabel bebas pada penelitian ini adalah pencahayaan, dan postur kerja serta iklim kerja. Variabel terikat dalam penelitian ini adalah keluhan MSDs (musculoskeletal disorders). Cara mengumpulkan data variabel pencahyaan dengan Lux meter merk LT Lutron Seri LM-810, variabel postur kerja diukur dengan tabel REBA, iklim kerja diukur dengan alat Heatstress Meter merk Extech Instruments Seri HT 30 dan keluhan musculoskeletal (musculoskeletal disorders) diukur dengan Kuesioner Nordic Body Map (NBM).

HASIL DAN PEMBAHASAN

Karakteristik responden

Tabel 1. Distribusi frekuensi karakteristik responden berdasarkan jenis kelamin, usia, masa kerja dan keluhan *musculoskeletal* (*musculoskeletal disorders*)

Variabel	Frekuensi	Presentase(%)		
Jenis kelamin				
Laki-laki	22	100		
Perempuan	0	0		
Usia				
≤ 20 tahun	7	31,8		
> 20 tahun	15	68,2		
Masa kerja				
≤ 1 tahun	9	40,9		
> 1 tahun	13	59,1		

Berdasarkan tabel 1 diketahui bahwa seluruh responden adalah laki-laki (100%), sebagian besar responden berusia >20 tahun yaitu sebanyak 15 orang (68,2%) dan sebagian besar masa kerja responden adalah > 1 tahun yaitu sebanyak 13 orang (59,1%).

Tabel 2. Distribusi frekuensi karakteristik responden berdasarkan pencahayaan, postur kerja, iklim kerja dan keluhan *musculoskeletal* (*musculoskeletal disorders*)

Variabel	Frekuensi	Presentase(%)
Pencahayaan		
Sesuai standar	21	95,5
Tidak sesuai standar	1	4,5
Postur kerja		

Ringan	8	36,4
Sedang	12	54,5
Tinggi	2	9,1
Iklim kerja		
Sesuai NAB	21	95,5
Tidak sesuai NAB	1	4,5
Keluhan musculoskeletal disorders		
Tidak ada keluhan	5	22,7
Ada keluhan	17	77,3

Berdasarkan tabel 2 diketahui bahwa sebagian besar pencahayaan dengan kategori sesuai standar atau >300 lux yaitu sebanyak 95,5%, sebagian besar postur kerja dengan kategori sedang yaitu sebanyak 54,5%, sebagian besar iklim kerja dengan kategori sesuai standar atau sesuai NAB yaitu sebanyak 95,5% dan sebagian besar karwayan mengalami keluhan MSDs yaitu 77,3%.

Tabel 3. Hubungan Pencahayaan dengan Keluhan *Musculoskeletal Disosders* pada Pekeria Bagian *Helper* di PT. SAMI

pada i didija bagian noper di i it pinti								
	Keluhan MSDs				Total			
Pencahayaan	Tid	ak ada	A	Ada	- Total		p-value C	
	n	%	n	%	N	%	•	
Sesuai standar	5	100	16	94,1	21	95,5		
Tidak sesuai	0	0	1	5,9	1	4,4	0,579	0,118
Total	5	100	17	100	22	100		

Sumber: Olah data SPSS

Berdasarkan tabel 3 menunjukkan hasil analisis hubungan antara pencahayaan dengan keluhan *Musculoskeletal Disosders*. Dari hasil tabulasi silang diatas menunjukkan bahwa sebagian besar responden dengan kategori tidak ada keluhan *Musculoskeletal Disosders* memiliki pencahayaan dengan kategori sesuai standar atau >300 lux (100%), sedangkan responden yang memiliki keluhan *Musculoskeletal Disosders* sebagian besar mendapatkan pencahayaan pada saat bekerja dengan kategori standar (94,1%).

Perhitungan statistik dengan uji *chi-square* menghasilkan *p-value* sebesar 0,579. Berdasarkan standar nilai p < 0,05 maka, dapat disimpulkan bahwa H_0 diterima dan H_a ditolak, dengan demikian dapat disimpulkan bahwa tidak ada hubungan antara pencahayaan dengan keluhan *Musculoskeletal Disosders*. Hasil *coefisien contingensi* (C) sebesar 0,118 menunjukkan bahwa tingkat hubungan kedua variabel termasuk dalam kategori sangat lemah.

Tabel 4. Hubungan Postur Kerja dengan Keluhan *Musculoskeletal Disosders* pada Pekerja Bagian *Helper* di PT. SAMI

<u> </u>		Keluhai	eluhan MSDs ,		т	otal		
Postur kerja	Tid	ak ada	A	Ada	- Total		p-value	C
	n	%	N	%	N	%		
Ringan	5	100	3	17,6	8	36,4		
Sedang	0	0	12	70,6	12	54,5	0,003	0,583
Berat	0	0	2	11,8	2	9,1	0,003	0,383
Total	5	100	17	100	22	100	-	

Sumber: Olah data SPSS

Berdasarkan tabel 4 menunjukkan hasil analisis hubungan antara pencahayaan dengan keluhan *Musculoskeletal Disosders*. Dari hasil tabulasi silang diatas menunjukkan bahwa sebagian besar responden dengan kategori tidak ada keluhan *Musculoskeletal Disosder* memiliki postur kerja dengan kategori ringan (100%), sedangkan responden yang memiliki keluhan *Musculoskeletal Disosders* sebagian besar memiliki postur kerja dengan kategori sedang (70,6%).

Perhitungan statistik dengan uji *chi-square* menghasilkan *p-value* sebesar 0,003. Berdasarkan standar nilai p < 0,05 maka, dapat disimpulkan bahwa H_0 ditolak dan H_a diterima, dengan demikian dapat disimpulkan bahwa ada hubungan antara postur kerja dengan keluhan *Musculoskeletal Disosders*. Hasil *coefisien contingensi* (C) sebesar 0,583 menunjukkan bahwa tingkat hubungan kedua variabel termasuk dalam kategori sedang.

Tabel 5. Hubungan Iklim Kerja dengan Keluhan *Musculoskeletal Disosders* pada Pekerja Bagian *Helper* di PT. SAMI

		Keluhai	n MSDs	S	_ т	'otal		
Iklim kerja	Tid	ak ada	F	Ada	- Total		p-value	C
	N	%	n	%	N	%	-	
Sesuai NAB	5	100	16	94,1	21	95,5		
Tidak sesuai	0	0	1	5,9	1	4,4	0,579	0,118
Total	5	100	17	100	22	100	•	

Sumber: Olah data SPSS

Berdasarkan tabel 5 menunjukkan hasil analisis hubungan antara iklim kerja dengan keluhan *Musculoskeletal Disosders*. Dari hasil tabulasi silang diatas menunjukkan bahwa sebagian besar responden dengan kategori tidak ada keluhan *Musculoskeletal Disosders* bekerja dengan iklim kerja kategori sesuai NAB (100%), sedangkan responden yang memiliki keluhan *Musculoskeletal Disosders* sebagian besar bekerja pada iklim kerja dengan kategori sesuai NAB (94,1%).

Perhitungan statistik dengan uji *chi-square* menghasilkan *p-value* sebesar 0,579. Berdasarkan standar nilai p < 0,05 maka, dapat disimpulkan bahwa H_0 diterima dan H_a ditolak, dengan demikian dapat disimpulkan bahwa tidak ada hubungan antara iklim kerja dengan keluhan *Musculoskeletal Disosders*. Hasil *coefisien contingensi* (C) sebesar 0,118 menunjukkan bahwa tingkat hubungan kedua variabel termasuk dalam kategori sangat lemah.

Analisis Multivariat

Uji multivariat dilakukan dengan menggunakan uji regresi logistik, dengan hasil uji sebagai berikut :

Tabel 6. Hasil Uji Multivariat Regresi Logistik

Variabel	В	S.E.	Wald	Df	Sig.	OR
Iklim kerja	0,293	41533,206	0,000	1	1,000	1,341
Postur kerja	21,420	10465,763	0,000	1	0,998	2008089806,039
Pencahayaan	-21,127	45316,710	0,000	1	1,000	0,000
Constant	-1,097	60572,919	0,000	1	1,000	0,334

Dari hasil uji regresi logistik ganda diperoleh persamaan Y = 0.334 + 1.341 (iklim kerja) + 2.008.089.806,039 (postur kerja) + 0.000 (pencahayaan). Berdasarkan tabel 6 dapat dilihat bahwa hasil analisis regresi logistik pada variabel

iklim kerja diperoleh p-value = 1,000 (p-value lebih besar dari α =0,05) maka kesimpulannya tidak ada hubungan antara iklim kerja dengan keluhan Musculoskeletal Disosders. Dari hasil uji juga diperoleh OR 1,341 yang artinya responden dengan iklim kerja tidak sesuai NAB mempunyai peluang terjadinya keluhan Musculoskeletal Disosders sebesar 1,341 kali dibandingkan dengan responden yang bekerja pada iklim kerja yang sesuai NAB. Variabel iklim kerja mempunyai nilai B sebesar 0,293 dan Wald 0,000. Hasil analisis regresi logistik pada variabel postur kerja diperoleh p-value = 0,998 (p-value lebih besar dari α=0,05), maka kesimpulannya tidak ada hubungan antara postur kerja dengan keluhan Musculoskeletal Disosders. Dari hasil tabel juga diperoleh OR 2.008.089.806,039 yang artinya responden dengan postur kerja berat mempunyai peluang terjadinya keluhan Musculoskeletal Disosders sebesar 2.008.089.806,039 kali dibandingkan dengan responden dengan postur kerja ringan dan sedang. Hasil analisis regresi logistik pada variabel pencahayaan diperoleh p-value = 1,000 (pvalue lebih besar dari α=0,05), maka kesimpulannya tidak ada hubungan antara pencahayaan dengan keluhan Musculoskeletal Disosders. Dari hasil tabel juga diperoleh OR 0,000 yang artinya responden dengan pencahayaan sesuai standar maupun tidak sesuai standart tidak berpengaruh sama sekali dengan peluang terjadinya keluhan Musculoskeletal Disosders. Sehingga dapat disimpulkan bahwa faktor postur kerja yang paling mempengaruhi kejadian keluhan Musculoskeletal Disosders. Variabel postur kerja mempunyai nilai B 21,420 dan Wald 10.465,763.

Analisis Univariat

Berdasarkan hasil penelitian, diketahui nilai minimal pencahayaan di PT SAMI Semarang adalah sesuai standar atau >300 lux. Pencahayaan akan mempengaruhi ketelitian dan performa kerja. Bekerja dalam kondisi cahaya yang buruk, akan membuat tubuh beradaptasi untuk mendekati cahaya. Jika hal tersebut terjadi dalam waktu yang lama meningkatkan tekanan pada otot bagian atas tubuh. Desain pencahayaan yang tepat pada seluruh area kerja sangat diperlukan agar setiap pekerja dapat melakukan pekerjaannya secara lebih mudah, lebih cepat dan dalam kondisi yang nyaman tanpa menimbulkan gangguan terhadap kesehatan dan bahkan keselamatan bagi para pekerja yang bersangkutan. (Tarwaka, 2013).

Hasil penelitian menunjukkan bahwa dari 22 responden, gambaran distribusi postur kerja yang diperoleh dari penilaian skor REBA dengan nilai skor REBA sebagian besar dengan kategori Sedang. Postur kerja merupakan posisi tubuh pekerja dalam melakukan pekerjaannya. Postur kerja janggal atau tidak alamiah dapat menjadi salah satu faktor penyebab terjadinya keluhan *musculoskeletal*. Risiko terjadinya keluhan otot skeletal akan meningkat apabila posisi tubuh semakin jauh dari pusat gravitasi tubuh. Pekerjaan yang memiliki tekanan seperti manual handling dan terjadi pengulangan terus — menerus dapat menyebabkan ketegangan kumulatif pada diskus yang mengakibatkan cedera atau nyeri pada tulang belakang dan trauma jaringan (Abdul, 2017).

Hasil penelitian menunjukkan bahwa gambaran iklim kerja yang diperoleh dari pengukuran iklim kerja di bagian pekerja *helper* masih memenuhi NAB atau sesuai NAB yang ditetapkan oleh Peraturan Menteri Ketenagakerjaan RI No 5 Tahun 2018. Meskipun demikian, iklim kerja yang terlalu rendah juga dapat menimbulkan keluhan kaku dan kurangnya kondisi sistem tubuh sedangkan iklm kerja yang terlalu tinggi akan menyebabkan kelelahan dengan akibat menurunnya

efisiensi kerja, denyut jantung dan tekanan darah meningkat, aktifitas organ-organ pencernaan menurun, suhu tubuh meningkat dan produksi keringat meningkat (efisiensi kerja sangat dipengaruhi oleh cuaca kerja dalam daerah nikmat kerja, jadi tidak dingin dan kepanasan).

Berdasarkan hasil penelitian diketahui bahwa pekerja bagian helper di PT SAMI Semarang sebagian besar mengalami keluhan Musculoskeletal Disosders dengan sebanyak 17 responden (77,3%). Sistem *Musculoskeletal* merupakan sistem yang kompleks dan tersusun atas tulang, sendi, otot, ligamen, tendon, serta jaringan lain yang menghasilkan struktur dan bentuk tulang. Ketika terdapat suatu gaya atau kekuatan yang melampaui kekuatan tulang dan otot saat menahan beban tentunya akan menyebabkan tidak seimbangannya sistem muskuloskeletal, hal ini akan berdampak pada timbulnya keluhan pada sistem muskoluskeletal. Pada penelitian ini, digunakan metode Nordic Body Map (NBM), melalui NBM dapat diketahui bagian-bagian otot mana yang mengalami MSDs dengan tingkat keluhan mulai dari rasa tidak nyaman (agak sakit) sampai sangat sakit (Tarwaka, 2010). Sementara itu, penelitian yang dilakukan oleh Khoffiya et al (2019) pada pekerja baggage handling service di bandara Ahmad Yani Semarang didapatkan bahwa pekeria dengan keluhan *musculoskeleta*l lebih banyak terjadi pada pekerja dengan postur kerja risiko tinggi yaitu 73.7%, daripada pekerja dengan postur kerja risiko sedang yaitu 17,6%.

Analisis Bivariat

Berdasarkan hasil dari analisis bivariat yaitu dengan menggunakan uji chisquare didapatkan bahwa nilai signifikannya adalah 0,579 (p value ≤ 0.05). Maka dapat dikatakan bahwa tidak terdapat hubungan antara pencahayaan dengan keluhan MSDs pada pekerja bagian helper di PT. SAMI Semarang. Pada penelitian ini rata-rata intensitas cahaya yang digunakan adalah sebesar 511 Luks. Menurut standar intensitas pencahayaan nasional Permenaker No. 5 Tahun 2018 menetapkan bahwa standar pencahayaan untuk jenis pekerjaan ini setidaknya membutuhkan paling sedikit 300 luks pencahayaan. Kemudian terdapat sebesar 94,1 % pekerja yang mengalami keluhan MSDs meskipun standar intensitas pencahayaan sudah sesuai dikarenakan lama waktu kerja yang dilakukan oleh pekerja bagian helper mempengaruhi penglihatan mereka secara umum. Kelelahan dan gangguan pada mata dapat diakibatkan oleh melihat suatu objek yang sama secara berulang-ulang pada waktu yang lama, hal ini terbukti dari rata-rata lama kerja yang dilakukan pekerja setiap hari adalah 10 jam (>8 jam/hari saat lembur). Walaupun intensitas penerangan lokal yang digunakan sudah sesuai dengan jenis pekerjaannya, kondisi melihat suatu objek yang sama secara berulang-ulang pada waktu yang lama akan mengakibatkan kelelahan pada mata, kelelahan pada mental, kerusakan indra mata dan kecelakaan kerja meningkat (Tarwaka, 2013). Sedangkan sebesar 5,9 % pekerja dengan keluhan MSDs yang standar pencahayaannya tidak sesuai dikarenakan pekerja tidak bisa melihat gulungan kabel dengan baik dan mempengaruhi posisi atau postur kerja untuk membungkuk agar posisi mata mendekati objek yang dikerjakan. Sebanyak 17 orang pekerja *helper* merasakan keluhan MSDs, rasa nyeri kemudian hilang saat sudah beristirahat.Dengan beristirahat rasa nyeri sudah hilang, maka pekerja *helper* merasa bahwa rasa nyeri tersebut adalah hal yang biasa. Selain itu, ketegangan otot dapat dipulihkan apabila ada jeda waktu istirahat yang dapat digunakan untuk peregangan otot. Pekerjaan yang dilakukan secara terus

menerus tanpa memperoleh kesempatan untuk relaksasi akan mengakibatkan keluhan otot karena otot menerima tekanan akibat pekerjaan yang dilakukan (Andini, 2015).

Sebagian besar pekerjaan sangat diperlukan suatu kondisi dimana pekerja harus mampu melihat suatu objek kerja dengan baik. Pada beberapa situasi intensitas cahaya yang tidak baik dan tidak sesuai akan menyulitkan seseorang untuk dapat melihat objek dengan baik. Kekurangan intensitas pencahayaan tersebut bahkan memungkinkan akan mempengaruhi posisi atau postur kerja untuk membungkuk agar posisi mata mendekati objek yang dikerjakan. Pada banyak kasus, postur tubuh akan menyesuaikan dengan pekerjaan yang dilakukan untuk dapat melihat objek dengan jelas (Tarwaka, 2013). Hal ini akan membuat tubuh menjadi stres, kelelahan dan kepenatan sehingga memungkinkan untuk terjadinya MSDs.

Intensitas pencahayaan yang sesuai dengan jenis pekerjaan yang dilakukan jelas akan meningkatkan produktifitas pekerjaannya. Sanders & Mc Cormic (1987) dalam Tarwaka (2011) menyimpulkan bahwa, dari hasil penelitian pada 15 perusahaan, di mana seluruh perusahaan yang diteliti menunjukkan kenaikan hasil kerja sebesar 4 - 35 %.

Penelitian ini juga sejalan dengan penelitian yang dilakukan oleh Fuady (2013) diperoleh nilai probabilitas (*P value*) sebesar 0,890 (*P value* > 0,05) sehingga dapat disimpulkan bahwa pada α (5%) tidak ada hubungan yang signifikan antara intensitas pencahayaan area kerja dengan MSDs pada pengrajin sepatu di Perkampungan Industri Kecil (PIK) Penggilingan Kecamatan Cakung 2013. Menurut hasil penelitian Asali (2017) pada operator jahit PO. Seventeen Glory Salatiga didapatkan nilai probabilitas antara tingkat pencahayaan dan postur kerja sehingga dapat ditarik kesimpulan bahwa tidak ada hubungan yang signifikan antara tingkat pencahayaan dengan postur kerja pada operator jahit PO. Seventeen Glory Salatiga 2017.

Secara teori, tingkat pencahayaan merupakan salah satu faktor yang mempengaruhi terjadinya MSDs, intensitas cahaya yang kurang memiliki potensi untuk mempengaruhi posisi kerja seseorang, jika tingkat intensitas cahaya atau penerangan pada suatu tempat tidak memenuhi persyaratan maka hal tersebut dapat menyebabkan postur leher untuk fleksi ke depan (menunduk) dan postur tubuh untuk fleksi (membungkuk) yang berisiko mengalami MSDs (Bridger, 1995).

Berdasarkan hasil dari analisis bivariat, yaitu dengan melakukan uji *Chi-Squar*e didapatkan bahwa nilai signifikannya adalah 0,003 (p value ≤ 0,05) menunjukkan bahwa terdapat hubungan antara postur kerja dengan keluhan MSDs pada pekerja bagian *helper* di PT SAMI Semarang.

Pada penelitian ini dampak dari postur kerja terhadap keluhan MSDs dikategorikan dalam 3 jenis, yaitu berisiko ringan (skor REBA 2-3), berisiko sedang (skor REBA 4-7) dan berisiko berat (skor REBA 8-10). Berdasarkan hasil penelitian dengan REBA, dimana dari jumlah 22 responden dengan postur kerja berisiko ringan (skor REBA 2-3) sebesar 17,6%, berisiko sedang (skor REBA 4-7) sebesar 70,6% dan berisiko berat (skor REBA 8-10) yaitu sebesar 11,8%. Penilaian risiko pekerjaan dilakukan dengan menggunakan metode REBA. Metode REBA diperkenalkan oleh Sue Hignett dan Lynn Mcatammney yang diterbitkan dalam jurnal *Apllied Ergonomics* tahun 2000. Metode ini merupakan kolaboratif oleh tim ergonomis, fisioterapi, ahli okupasi dan para perawat yang mengidentifikasi sekitar

600 posisi di industri manufakturing. Metode REBA, memungkinkan dilakukan suatu analisis secara bersamaan dari posisi yang terjadi pada anggota tubuh bagian atas (lengan, lengan bawah dan pergelangan tangan) badan, leher, dan kaki. Metode ini juga mendefinisikan faktor-faktor lainnya yang diduga dapat menentukan hasil penilaian akhir dari postur tubuh seperti: beban atau gaya yang dilakukan, jenis pegangan atau jenis aktifitas otot yang dilakukan pekerja. Hal ini memungkinkan untuk mengevaluasi baik posisi statis dan dinamis, dan keadaan yang dapat menunjukkan adanya perubahan secara tiba-tiba pada postur atau posisi tidak stabil (Tarwaka, 2013).

Berdasarkan hasil penelitian di PT. SAMI sebanyak 17 orang *helper* merasakan keluhan MSDs. Kemudian sebesar 17,6 % pekerja memiliki postur kerja risiko ringan dan 70,6 % memiliki postur kerja risiko sedang dengan keluhan MSDs. Pada pekerja bagian *helper* merupakan pekerja yang bisa mengalami keluhan MSDs karena banyaknya postur tubuh yang janggal, postur tubuh yang dinamis, postur kerja yang berulang dan desain kerja dengan pekerja tidak ergonomis. Contoh seperti pada postur tubuh pekerja dalam kondisi pengambilan kabel di rak yang paling bawah. Postur tubuh yang cenderung membungkuk apabila semakin sering dan semakin lama digunakan dengan berlebihan, maka hal demikian akan menyebabkan hilangnya kelenturan pada otot tersebut, dari sudut otot (Tarwaka, 2004).

Faktor pekerjaan ini juga dipengaruhi oleh tidak sesuainya desain kerja dengan pekerja, desain kerja sangat ditentukan oleh jenis dan sifat pekerjaan yang dilakukan. Baik desain kerja untuk posisi duduk maupun posisi berdiri, keduanya mempunyai keuntungan dan kerugian (Tarwaka, 2013). Ketidaksesuaian antara desain kerja dengan pekerja, mengakibatkan posisi tubuh pekerja cenderung tidak ergonomis. Pada penelitian ini, ditemukan kondisi yang mempengaruhi posisi tubuh *helper* yaitu salah satunya adalah desain rak tempat gulungan kabel yang tidak sesuai dengan postur kerja helper, posisi membungkuk saat melakukan pengambilan kabel di rak paling bawah kemudian postur tubuh yang dinamis akan meningkatkan stres ketika posisi tubuh menjauhi posisi normal tersebut. Pekerjaan yang dilakukan secara dinamis menjadi berbahaya ketika tubuh melakukan pergerakan yang terlalu ekstrim sehingga energi yang dikeluarkan otot menjadi lebih besar atau tubuh menahan beban yang cukup besar sehingga timbul hentakan tenaga yang tiba-tiba dan hal tersebut dapat menimbulkan cidera. Perbedaan antara postur statis dan dinamis juga dapat dilihat dari kerja otot, aliran darah, oksigen dan energi yang dikeluarkan pada kedua jenis postur tersebut. Pekerjaan yang menuntut pekerja berada pada posisi kerja yang tidak ergonomis akan membuat pekerja merasa cepat lelah dan secara tidak langsung pekerja menerima beban tambahan dalam menyelesaikan pekerjaannya.

Pekerjaan yang dilakukan secara terus menerus tanpa memperoleh kesempatan untuk relaksasi akan mengakibatkan keluhan otot karena otot menerima tekanan akibat pekerjaan yang dilakukan. Postur tubuh dalam kerja sangat ditentukan oleh jenis pekerjaan yang dilakukan. Postur kerja tersebut masing-masing mempunyai pengaruh yang berbeda-beda terhadap tubuh. Menurut penelitian yang telah dilakukan oleh Susihono dan Prasetyo (2012) menunjukkan bahwa postur kerja berdiri dalam waktu yang lama menyebabkan penggumpalan pembuluh darah vena, karena aliran darah berlawanan dengan gaya gravitasi.

Hasil penelitian yang dilakukan oleh Khoffiya (2019) bahwa 52,8% pekerja baggage handling service di Bandara Ahmad Yani Semarang memiliki postur kerja berisiko tinggi. Penelitian lain juga sejalan dengan penelitian yang dilakukan oleh Kristiyaningsih (2019), berdasarkan uji statistik Pearson Product Momen antara postur kerja dengan keluhan *musculoskeletal disorders* dapat diketahui nilai p = 0.001 sehingga p < 0.05. Hasil uji statistik menunjukkan ada hubungan yang signifikan antara postur kerja dengan keluhan musculoskeletal disorders pada pekerja bagian spinning PT. Bintang Makmur Sentosa Tekstil Industri (BMSTI) dengan nilai korelasi (r) = 0,638 yang menunjukkan bahwa tingkat hubungan antar variabel kuat dan menunjukkan arah korelasi positif (searah) yang berarti semakin bertambahnya postur kerja maka semakin bertambah pula keluhan *musculoskeletal*. Hal ini juga dikuatkan penelitian Octaviani (2017) bahwa terdapat hubungan postur kerja dengan keluhan MSDs dengan nilai p = 0,001. Menurut Grandjien dalam Fuady (2013), posisi tubuh yang menyimpang secara signifikan terhadap posisi normal saat melakukan pekerjaan dapat menyebabkan stres mekanik lokal pada otot, ligamen dan persendian. Hal ini mengakibatkan cidera pada leher, tulang belakang, bahu, pergelangan tangan, dan lain-lain. Sikap kerja tidak alamiah menyebabkan bagian tubuh bergerak menjauhi posisi alamiahnya. Semakin jauh posisi bagian tubuh dari pusat gravitasi, semakin tinggi pula terjadi keluhan otot skeletal. Sikap kerja tidak alamiah pada umumnya karena ketidaksesuaian pekerja dengan kemampuan pekerja. Menurut ISHA (2015) ketika melakukan postur janggal untuk waktu yang lama, mungkin mulai merasakan sakit dan ketidaknyamanan. Hal ini terjadi ketika otot-otot lelah karena kurang gerak membuat aliran darah tidak cukup untuk menyediakan energi. Dengan adanya nilai risiko minimal dan maksimal risiko postur kerja, maka diduga maka semakin bertambahnya nilai risiko maka akan menambah keluhan *musculoskeletal* pada responden. Sehingga postur kerja memiliki kontribusi terhadap keluhan musculoskeletal. Menurut Kuswana (2014) pekerjaan yang dilakukan secara dinamis menjadi berbahaya ketika tubuh melakukan pergerakan terlalu ekstrim sehingga energi yang dikeluarkan oleh otot menjadi besar, meskipun demikian postur kerja dinamis menyebabkan kelelahan agak lama terjadi. Postur kerja janggal juga dialami oleh pekerja unit spinning seperti postur membungkuk ketika mengambil gulungan benang pada bobin dan posisi tangan yang menjangkau ke atas melebihi kepala ketika mengambil gulungan roving pada penggantung mesin spinning. Postur kerja berdiri dapat menyebabkan keluhan musculoskeletal disorder.

Berdasarkan analisis statistik bivariat didapatkan hasil bahwa antara iklim kerja dengan keluhan MSDs pada pekerja bagian *helper*, tidak terdapat hubungan dengan nilai p value iklim kerja sebesar 0,579 (p value ≤0,05). Pekerja *helper* yang memiliki keluhan MSDs dengan iklim kerja yang sesuai NAB sebesar 94,1%, sedangkan pekerja yang memiliki keluhan MSDs dengan iklim kerja yang tidak sesuai NAB yaitu sebesar 5,9%, hal ini dikarenakan paparan suhu dingin yang berlebihan yang disebabkan oleh penggunaan AC dan kipas angin untuk ruangan produksi sehingga dapat menurunkan kelincahan, kepekaan dan kekuatan pekerja. Gerakan pekerja akan menjadi lamban, sulit bergerak yang disertai dengan menurunnya kekuatan otot. Perbedaan suhu lingkungan dengan suhu tubuh yang terlampau besar menyebabkan sebagian energi yang ada dalam tubuh akan termanfaatkan oleh tubuh untuk beradaptasi dengan lingkungan tersebut. Apabila

hal ini tidak diimbangi dengan pasokan energi yang cukup, maka akan terjadi kekurangan suplai oksigen kerja otot. Akibatnya, peredaran darah kurang lancar, suplai oksigen kerja otot menurun, proses metabolisme karbohidrat terhambat dan terjadi penimbunan asam laktat yang dapat menimbulkan rasa nyeri otot (Suma'mur, Grandjean dalam Tarwaka, 2010).

Berdasarkan teori ergonomi, *Musculoskeletal disorders* (MSDs) terjadi akibat pengaruh dari beberapa faktor yang dikelompokkan menjadi faktor internal dan eksternal. Iklim kerja merupakan faktor eksternal yang berasal dari pekerjaan yang dapat mempengaruhi terjadinya keluhan pada sistem *musculoskeletal*. Iklim kerja diatas NAB dapat menurunkan produktivitas dan kapasitas kerja akibat rasa ketidaknyamanan yang terjadi pada pekerja (Guo, *et al.*, 1995). Iklim kerja erat hubungannya dengan eksistensi kehidupan manusia yang ada di dalam lingkungan tersebut. Produktivitas, efisiensi dan efektivitas kerja sangat dipengaruhi oleh kondisi iklim (cuaca) kerja (Suma'mur, 2009).

MSDs terjadi sebagai akibat dari kombinasi berbagai faktor yaitu faktor pekerja, pekerjaan dan lingkungan. Faktor lingkungan seperti paparan suhu yang berlebihan (baik dingin ataupun panas) akan menurunkan kelincahan, kekuatan dan kepekaan pekerja sehingga gerakan yang dihasilkan lebih lamban serta sulit bergerak yang akan disertai dengan penurunan kekuatan otot (Tarwaka, 2015).

Pada penelitian ini, diperoleh nilai rata-rata iklim kerja 26,0318 ^oC. Berdasarkan Permenaker No. 5 Tahun 2018, nilai ambang batas (NAB) indek suhu basah dan bola (ISBB) untuk beban kerja ringan tidak boleh melebihi 31 ^oC, untuk pekerjaan dengan beban kerja sedang tidak boleh melebihi 28 ^oC, sedangkan untuk pekerjaan dengan beban kerja berat tidak boleh melebihi 2750 ^oC. Berdasarkan data ISBB yang dihasilkan, pada penelitian ini dapat disimpulkan bahwa paparan iklim kerja area kerja pada pekerja bagian *helper* sudah mengalami aklimatisasi, yang bertujuan untuk penyesuaian seseorang terhadap suatu iklim (cuaca) tertentu agar tidak mengalami efek buruk baik secara fisik maupun psikis. Menurut Suma'mur (2009), orang Indonesia pada umumnya beraklimatisasi iklim tropis, yang suhunya sekitar 28-32 ^oC dengan kelembapan 85-95 %. Hal inilah yang menjadi asumsi peneliti bahwa faktor iklim kerja tidak berpengaruh dengan keluhan MSDs pada pekerja bagian *helper* di PT SAMI Semarang.

Penelitian lain yang dilakukan oleh Fausiyah (2017) dengan judul hubungan karakteristik individu dan iklim kerja dengan keluhan MSDs pada pekerja perakitan mini bus di PT. Mekar Armada Jaya Magelang. Berdasarkan hasil pengukuran ISBB, paparan iklim kerja melebihi nilai ambang batas (NAB). Hasil penelitian menunjukkan bahwa tidak ada hubungan antara keluhan MSDs dengan karakteristik individu (umur, masa kerja dan kebiasaan merokok) tetapi ada hubungan yang signifikan dan kuat antara paparan iklim kerja dan keluhan MSDs (p = 0.000 ; r = 0.730). Fuady (2013) dalam penelitiannya didapatkan nilai probabilitas (p-value) sebesar 0,187 (p-value > 0,05) sehingga dapat disimpulkan bahwa pada α (5%) tidak ada hubungan yang signifikan antara suhu area kerja dengan MSDs pada pengrajin sepatu di Perkampungan Industri Kecil (PIK) Penggilingan Kecamatan Cakung 2013. Meskipun tidak terdapat hubungan yang signifikan secara statistik antara iklim kerja dengan MSDs, tetapi pada penelitian Khofiya (2019) pada pekerja baggage handling service di bandara Ahmad Yani Semarang terdapat hubungan antara iklim kerja dengan keluhan MSDs dengan p value = 0.019.

Faktor iklim kerja perlu diperhatikan demi kenyamanan dan peningkatan produktifitas pekerja. Sebagai upaya preventif terhadap penyakit atau gangguan kesehatan akibat lingkungan kerja yang bersuhu tinggi, yang paling penting dilakukan adalah aklimatisasi pekerja kepada lingkungan kerjanya. Selain itu di ruangan kerja yang bersuhu tinggi juga harus tersedia cukup air minum yang bertujuan agar pekerja tidak kekurangan cairan atau dehidrasi. Untuk mencapai hasil pencegahan yang sebaik-baiknya harus dikordinasikan aspek teknik-teknologi dan aspek kedokteran, pendekatan teknik dan teknologi dimaksudkan untuk menurunkan suhu lingkungan di tempat kerja, sedangkan aspek medis mengevaluasi efek suhu kepada tenaga kerja (Suma'mur, 2009).

Analisis Multivariat

Hasil penelitian menunjukkan bahwa faktor yang paling berpengaruh dalam faktor Musculoskeletal disosder adalah postur keria 2.008.089.806,039). Sedangkan faktor pencahayaan dan iklim kerja tidak memiliki pengaruh dalam kejadian keluhan MSDs dikarenakan data yang diperoleh menunjukan bahwa nilai pengukuran pencahayaan dan iklim kerja sudah sesuai dengan NAB. Pada *helper* yang melakukan postur kerja yang tidak ergonomis (tidak alamiah) lebih berpengaruh meningkatkan kejadian keluhan MSDs dibandingkan helper yang mempunyai postur kerja ergonomis. Nilai G didapat 10,585 dan diperoleh nilai Nagelkerker sebesar 0,678 yang berarti variabel bebas (pencahayaan, postur kerja, iklim kerja) mampu menpengaruhi 67,8% keragaman/variasi keluhan MSDs dan sisanya yaitu 32,2% dijelaskan oleh faktor lainnya.. Menurut Nurmianto (2004), duduk lama dengan sikap duduk yang salah (tidak alamiah) akan menyebabkan otot-otot pinggang menjadi tegang dan dapat merusak jaringan lunak sekitarnya.

Sikap kerja tidak alamiah atau postur kerja janggal adalah postur kerja yang dilakukan dengan posisi tubuh bergerak menjauhi posisi almiah seperti punggung yang terlalu membungkuk, tangan dalam posisi terangkat, posisi jongkok, posisi badan memuntir, dan lainnya. sikap kerja tidak alamiah/postur kerja janggal ini pada umumnya karena tuntutan tugas, alat kerja dan stasiun kerja tidak sesuai dengan kemampuan dan keterbatasan pekerja. Saat bekerja posisi tubuh yang baik adalah posisi tubuh duduk dengan dan tidak pada leher menunduk atau tidak condong ke depan (miring kekanan atau kekiri), kearah belakang atau memaksakan postur sesuai dengan pekerjaan yang dilakukan (Icsal, 2016). Posisi tubuh yang menyimpang secara signifikan terhadap posisi normal saat melakukan pekerjaan dapat menyebabkan stress mekanik lokal pada otot, ligament, dan persendian. Hal ini mengakibatkan cedera pada leher, tulang belakang, bahu, pergelangan tangan, dan lain-lain. Namun dilain hal, meskipun postur terlihat nyaman dalam bekerja, dapat berisiko juga jika mereka bekerja dalam jangka waktu yang lama. Pekerjaan yang dikerjakan dengan duduk dan berdiri, seperti pada pekerja kantoran dapat mengakibatkan masalah pada punggung, leher dan bahu serta terjadi penumpukan darah di kaki jika kehilangan kontrol yang tepat (Nurhikmah, 2011).

Postur kerja tidak ergonomis akan membuat pekerja melakukan sikap paksa dalam melakukan pekerjaannya. Semakin jauh posisi bagian tubuh dari pusat gravitasinya maka semakin tinggi pula risiko terjadinya MSDs. Penelitian ini sejalan dengan penelitian yang dilakukan Cindiyastira (2014) pada variabel sikap kerja, diketahui bahwa responden yang mengalami risiko tinggi sebanyak 25

responden (62,5%), sedangkan risiko sedang sebanyak 15 responden (37,5%), hal ini menunjukkan bahwa lebih banyak yang mengalami risiko tinggi dibandingkan risiko sedang. Hasil analisis statistik Chi Square Test tentang hubungan antara sikap kerja dengan keluhan MSDs pada tingkat kemaknaan diperoleh nilai (p= 0,015) yang berarti nilai P < 0,05 maka Ho ditolak dan Ha diterima. Hasil penelitian menunjukkan bahwa ada hubungan antara sikap kerja dengan keluhan MSDs pada tenaga kerja unit produksi paving block di CV. Sumber Galian Makassar Tahun 2014.

Penyebab timbulnya keluhan *Musculoskeletal Disorders* (MSDs) pada pekerja sektor informal adalah akibat dari postur kerja atau posisi tubuh pada saat melakukan aktivitas pekerjaan dan terdapat pembebanan pada otot yang berulangulang dalam posisi janggal sehingga menyebabkan cidera atau trauma pada jaringan lunak dan sistem saraf. Trauma tersebut akan membentuk cidera yang cukup besar yang kemudian dieksspresikan sebagai rasa sakit atau kesemutan, pegal, nyeri tekan, pembengkakan dan kelemahan otot. Trauma jaringan yang timbul dikarenakan kronisitas atau penggunaan tenaga yang berulang-ulang, peregangan yang berlebihan atau penekanan lebih ada satu jaringan.

Sebuah penelitian yang dilakukan di Korea oleh Jung Ho Kim pada tahun 2015, dengan judul "Risk Factors of Work-related Upper Extermity Musculoskeletal Disorders in Male Cameramen". Didapatkan data bahwa tingkat gejala WRMSDs tertinggi dirasakan oleh bahu 14,5% dan bagian terendah terjadi pada lengan dan siku 6%. Hasil analisis regresi logistik menunjukkan bahwa gejala pada bahu disasebabkan oleh beban fisik, dan gejala pada lengan, pergelangan tangan dan siku, disebabkan oleh faktor ergonomis.

Selain itu penelitian yang dilakukan oleh Sinta Dwi Rosalina, yang berjudul "Analisis Faktor-faktor Yang Berhubungan dengan Kejadian *Musculoskeletal Disorders* Segmen Lengan, Bahu, dan Kaki pada Pekerja Tenun Ikat di Jepara". Dalam penelitiannya menunjukkan adanya hubungan antara gerakan berulang dengan keluhan pada bagian lengan. Dimana 86,7% respondennnya melakukan gerakan repetitif tinggi yaitu gerakan dengan frekuensi \geq 30 kali per menit. Adanya gerakan berulang dalam jangka waktu yang lama akan melebihi kemampuan otot pekerja untuk melakukan pemulihan (recovery), hal ini dapat mendorong timbulnya gangguan pada otot.

KESIMPULAN

Sebagian besar pencahayaan dengan kategori sesuai standar atau >300 lux yaitu sebanyak 95,5%. Sebagian besar postur kerja karyawan dengan kategori postur kerja sedang yaitu sebanyak 54,5%. Sebagian besar iklim dengan kategori sesuai NAB yaitu sebanyak 95,5%. Sebagian besar karyawan mengalami keluhan musculoskeletal disosders yaitu sebanyak 77,3%. Tidak ada hubungan pencahayaan dengan keluhan musculoskeletal disosders pada pekerja bagian helper PT. SAMI Semarang (p-value=0,579, C=0,118). Ada hubungan postur kerja dengan keluhan musculoskeletal disosders pada pekerja bagian helper PT. SAMI Semarang (p-value=0,003, C=0,583). Tidak ada hubungan iklim kerja dengan keluhan musculoskeletal disosders pekerja bagian helper PT. SAMI Semarang (p-value=0,579, C=0,118). Faktor yang paling berpengaruh dalam kejadian keluhan Musculoskeletal Disosders adalah faktor postur kerja (OR=2.008.089.806,039).

SARAN

Agar membiasakan diri untuk melakukan peregangan otot seperti menggerakkan kepala, tangan, dan kaki di sela-sela pekerjaan ataupun saat istirahat, dengan tujuan supaya sirkulasi darah tetap lancar ke seluruh anggota tubuh dan tubuh tidak terlalu lama dalam keadaan statis yang dapat mengakibatkan pekerja menjadi lebih cepat lelah. Memperhatikan cara mengangkat yang benar saat melakukan aktivitas. Memperbaiki desain rak agar lebih ergonomis. Melakukan sosialisasi dan edukasi aktif kepada pekerja *helper* mengenai cara bekerja dan sikap kerja yang tepat sesuai dengan prinsip ergonomi.

DAFTAR PUSTAKA

- Abdul Rahman. 2017. Analisis Postur Kerja Dan Faktor Yang Berhubungan Dengan Keluhan MSDs Pada Pekerja Beton Sektor Informal Di Kelurahan Samata Kecamatan Somba Opu Kabupaten Gowa Tahun 2017. Universitas Islam Negeri Alauddin. Skripsi.
- Balitbang Kemenkes RI. 2013. Riset Kesehtan Dasar: Riskesdas. Jakarta: Balitbang Kemenkes RI
- Batham C, Yasobant S. 2016. A risk assessment study on work-related musculoskeletal disorders among dentists in Bhopal, India. *Indian J Dent Res.* Vol. 27 No 3. Hal 236–41.
- Bridger, R.S. 1995. *Introduction to Ergonomics*. Singapore: McGraww Hill, Inc.
- Budiman F. 2015. Hubungan Posisi Kerja Angkat Dengan Keluhan Musculoskeletal Disosder Pada Nelayan Tangkap Di Muara Angke Pluit Jakarta Utara. *Forum Ilmiah*. Vol. 12 No 1. Hal 23-32.
- Chengalur, S. N., Rodgers, S. H., & Benard, T. E. 2004. *Kodak's ergonomi Design for People at Work 2nd Ed*. New Yourk: John Wiley and Sons.
- Cohen, et al. 1997. Element of Ergonomic Programs. A Primer Based On Workplace Evaluation of Musculoskeletal Disorders. America: U.S Departement of Health and Human Services. NIOSH
- Dahlan, M. S. 2011. Statistik untuk kedokteran dan kesehatan. Penerbit Salemba.
- Fausiyah, Komarul. 2017. Hubungan Karakteristik Individu Dan Iklim Kerja Dengan Keluhan MSDs Pada Pekerja Perakitan Mini Bus Di PT Mekar Armada Jaya Magelang. Surabaya: FKM UNAIR.
- Fuady, Ahmad Rifqy. 2013. Faktor-faktor yang Berhubungan dengan MSDs (Musculoskeletal Disosders) pada Pengrajin Sepatu di Perkampungan Industri Kecil (PIK) Penggilingan Kecamatan Cakung. Skripsi. Fakultas Kedokteran dan Ilmu Kesehatan Universitas Islam Negeri Syarif Hidayatullah Jakarta. Skripsi.

- Grandjean, E. 1993. Fitting The Task to The Man. 4th Edition. Taylor & Francis, Inc: London.
- Grzywinski W, Wandyez A, Tomczak A, Jelonek T, Szaban J, Jakubowski M. 2010. *Occurrence of Musculoskeletal Disosders in Woodcutters*. Forest Engineering: Meeting the Needs of the society and the environment.
- Guo HR, Tanaka S, Cameron LL, Seligman PJ, Behrens VJ, Ger J, et al. 1995. *Back pain among workers in the United States*: national estimates and workers at high risk. Am J Ind Med 28(5).
- Health and Safety Executive United Kingdom (HSE) UK. 2007. Understanding ergonomic at woek: reduce accidents and ill health and increase produktivity by fitting the taks to the worker. Tersedia di: http://www.hse.gov.uk [Diakses 20 Januari 2021]
- Health and Safety Executive. 2016. Work-related Musculosceletal Disorders(WRMSDs) Statistics, Great Britain 2016. Tersedia di: www.hse.gov.uk/statistics/index.htm. [Diakses 21 Januari 2021].
- Hendra, R. S. 2009. Risiko ergonomi dan keluhan musculoskeletal disorders (MSDs) pada pekerja panen kelapa sawit. In Prosiding Seminar Nasional Ergonomi IX (pp. D11-1– D11-8). TI-UNDIP, Semarang.
- Hignett, S., Lyn M.A. 2000. *Technical: REBA (Rapid Entire Body Assessment)*, *Applied Ergonomics*. Cornell University of Ergonimics. Available at http://www.REBA.cutools.htm.
- Hutabarat Y. 2017. Dasar-dasar Pengetahuan Ergonomi. Malang: Media Nusa Creative.
- International Labour Organization. 2013. *The Prevention of Occupational Disease*. Geneva: International Labour Organization.
- Iridiastadi H., Yassierli. 2015. *Ergonomi Suatu Pengantar*. Bandung: PT. Remaja Rosdakarya.
- ISHA. 2015. Musculoskeletal Disorder (MSDs) Risk Factors and types. http://www.ihsa.ca/Topics_HAzards/msd_faqs.aspx3msd_risk_contribute (Diakses pada 21 Januari 2021)
- National Institute for Occupational Safety and Health. 2007. *Ergonomic Guidelines* for Manual Material Handling. 4676 Columbia Parkway Cincinnati.
- Torma-Krajewski, J., Steiner, L., Lewis, P., Gust, P., & Johnson, K. 2007. Implementation of an ergonomics process at a US surface coal mine. *International Journal of Industrial Ergonomics*, Vol. 37 No 2. Hal 157-

167.

- Kowalak *et al.* 2003. *Buku Ajar Patofisiologi*. Penerbit buku kedokteran EGC: Jakarta.
- Khofiyya A.N., Suwondo A., Jayanti S., 2019. Hubungan Beban Kerja, Iklim Kerja Dan Postur Kerja Terhadap Keluhan Musculoskeletal Pada Pekerja Baggage Handling Service Bandara. *Jurnal Kesehatan Masyarakat*. Vol 7. No 4. Hal 619 625.
- Kristiyaningsih, E. 2019. Hubungan Masa Kerja dan Postur Kerja dengan Keluhan Musculoskeletal Disosders Pada Pekerja Bagian Spinning PT. Bintang Makmur Sentosa Tekstil Industri (BMSTI) Sragen. Universitas Sebelas Maret Surakarta. Skripsi.
- Kuorinka, I., & Patry, L. 1995. Participation as a means of promoting occupational health. *International Journal of Industrial Ergonomics*, Vol 15 No 5. Hal 365-370.
- Kuswana, W. S. 2014. Ergonomi dan K3. Bandung: PT Remaja Rosdakarya.
- Manuaba, A. 2000. Ergonomi, Kesehatan dan Keselamatan Kerja. Editor: Sritomo Wignyosubroto an Stefanus Eko Wiranto. Proceeding Seminar Nasional Ergonomi 2000, Guna Wijaya, Surabaya.
- McCauley-Bush P. 2012. Ergonomics: Foundational Principles, Aplications, and Technologies, New York: CRC Press.
- Oborne, D.J. 1995. Ergonomics at Work: Human Factors in Design and Development. England: John Wiley and Sohn Ltd.
- OSHA 3125.2000. Ergonomi: *the study of work*. Diunduh tanggal 20 Januari 2021. http://www.osha.gov/Publication/osha3125.pdf
- Padmanathan V, Joseph L, Omar B, Nawawi R. 2016. Prevalence Of Musculoskeletal Disorders And Related Occupational Causative Factors Among Electricity Linemen: A Narrative Review. Int J Occup Med Environ Health. Vol 29 No5. Hal 725–34.
- Pangribuan, D. M. 2009. Analisa Postur Kerja dengan Metode RULA Pada Pegawai Bagian Pelayanan Perpustakaan USU Medan. Universitas Sumatera Utara. Skripsi.
- Peraturan Menteri Tenaga Kerja No 5 Tahun 2018 tentang K3 Lingkungan Kerja. Jakarta: Kementrian Ketenagakerjaan.
- Pheasant, Stephen. 2003. Bodyspace: Antropometry, Ergonomic, and the design of work. Scond Edition. London: Taylor and Francis.

- Picavet HSJ and Schouten JSAG. 2000. *Pyysical Load in Daily Life and Low Back Problems in the General Population*. The morgen study. In: preventive Medicine.
- Pulat, B. Mustafa, dan Alexander, David C. 1997. *Industrial Ergonomics: Case Studies*. McGraw-Hill, Inc
- Ridley J. 2003. *Kesehatan dan Keselamatan Kerja*, Edisi Ketiga. Jakarta: Penerbit Erlangga.
- Sabiila A.R. 2013. Risiko Ergonomi dan Keluhan Musculoskeletal Disosders pada Pekerja Kehutanan Bidang Permanen Kayu di KPH Kendal Perum Perhutani Unit I Jawa Tengah. Departemen Managemen Fakultas Kehutanan Institut Pertanian Bogor. Skripsi.
- Sanders, John A, JR. 1995. *Anthropometric Methods: Designing to Fit The Human Body*, Human Factors and Ergonomic Society.
- Sanders, M.S. & Mccormick, E.J. 1987. *Human Factors In Engeneering and Design*, 6th edt. McGraw-Hill Book Campany. USA: 331-454
- Santoso. 2004. *Ergonomi Manusia, Peralatan dan Lingkungan*. Cetakan I. Jakarta: Prestasi Pustaka.
- Straker, L. M. 2000. An Overview of Manual Handling Injury Statistic in Western Australia. Association Curtun University Technology: Perth Internasional Ergonomics.
- Suhardi, B. 2008. *Perancangan Sistem Kerja dan Ergonomi Industri*. Jakarta: Direktorat Pembinaan Sekolah Menengah Kejuruan, Direktorat Jenderal Manajemen Pendidikan Dasar dan Menengah, Departemen Pendidikan Nasional.