Environmental Information System for Disaster Risk Management at Kota Surakarta

Penulis

  • R. Muhammad Amin Sunarhadi Faculty of Mathematics and Natural Science of Universitas Sebelas Maret
  • Prabang Setyono Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Surakarta, Indonesia
  • Lia Kusumaningrum Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Surakarta, Indonesia
  • Bayu Kurniaaji Department of Geography Education, Universitas Veteran Bangun Nusantara, Sukoharjo, Indonesia
  • Haydar Ally b Laboratory of Environmental Information System, Universitas Sebelas Maret, Surakarta, Indonesia
  • Muhammad Hanif Ahsani Taqwim Laboratory of Environmental Information System, Universitas Sebelas Maret, Surakarta, Indonesia
  • Nida Ulhaq Fil'ardiani Laboratory of Environmental Information System, Universitas Sebelas Maret, Surakarta, Indonesia
  • Fadhil Achmad Zaky Laboratory of Environmental Information System, Universitas Sebelas Maret, Surakarta, Indonesia
  • Sa'ad Abdul Jabbar Laboratory of Environmental Information System, Universitas Sebelas Maret, Surakarta, Indonesia

DOI:

https://doi.org/10.32585/jgse.v5i1.4215

Kata Kunci:

ecosystem, disaster risk reduction, environmental information system

Abstrak

Through this activity, disaster volunteers in Surakarta City can conduct disaster risk reduction (DRR) efforts based on ecosystem data and information management. Climate change has an increasing impact on ecosystems, resulting in environmental damage, thereby increasing the intensity of disaster events that need to be studied and monitored. Managing this disaster risk data and information requires using an environmental information system for ecosystem-based disaster risk reduction (ECO-DRR). The capacity of volunteers is vital in dealing with the risks of natural disasters and the impact of climate change by using SIL. Currently, volunteers manage using a form that has yet to accompany the presentation of information for decision-making and management of disaster risk knowledge. Requires remedial action by increasing the ability of volunteers to manage disaster risk data and information, report disaster events, and present them in dashboards. The method used is the parameters for development of SIL as a solution for ecosystem-based disaster risk reduction (ECO-PRB). The parameters were conducted on the topics of disaster risk, disaster incident reporting, and dashboard information management. The development of ECO-DRR SIL uses Quality Function Deployment (QFD) to obtain information on improvements in developing a user-based digital platform.

Unduhan

Data unduhan belum tersedia.

Referensi

Agustianingsih, D. P., Ariyaningsih, & Shaw, R. (2023). Community disaster resilience using multi-hazard assessment during Covid-19: The case of Denpasar, Indonesia. Natural Hazards Research. https://doi.org/10.1016/J.NHRES.2023.04.006

Cos-Guerra, O. D., Castillo-Salcines, V., & Cantarero-Prieto, D. (2022). A geographical information system model to define COVID-19 problem areas with an analysis in the socio-economic context at the regional scale in the North of Spain. Geospatial Health, 17(s1). https://doi.org/10.4081/gh.2022.1067

Data dan Informasi Bencana Indonesia (DIBI). (2022, December 17). Badan Nasional Penanggulangan Bencana (BNPB).

Dou, M., Chen, J., Chen, D., Chen, X., Deng, Z., Zhang, X., Xu, K., & Wang, J. (2014). Modeling and simulation for natural disaster contingency planning driven by high-resolution remote sensing images. Future Generation Computer Systems, 37, 367–377. https://doi.org/10.1016/J.FUTURE.2013.12.018

Fakhriati, F., Nasri, D., Mu’jizah, M., Supriatin, Y. M., Supriadi, A., Musfeptial, M., & Kustini, K. (2023). Making peace with disaster: A study of earthquake disaster communication through manuscripts and oral traditions. Progress in Disaster Science, 18, 100287. https://doi.org/10.1016/J.PDISAS.2023.100287

Mao, Q., Li, N., & Peña-Mora, F. (2019). Quality function deployment-based framework for improving the resilience of critical infrastructure systems. International Journal of Critical Infrastructure Protection, 26, 100304. https://doi.org/10.1016/J.IJCIP.2019.100304

Modarresi, S. A., & Maleki, M. R. (2023). Integrating pre and post-disaster activities for designing an equitable humanitarian relief supply chain. Computers & Industrial Engineering, 181, 109342. https://doi.org/10.1016/J.CIE.2023.109342

Nissen, S., Carlton, S., Wong, J. H. K., & Johnson, S. (2021). ‘Spontaneous’ volunteers? Factors enabling the Student Volunteer Army mobilisation following the Canterbury earthquakes, 2010–2011. International Journal of Disaster Risk Reduction, 53, 102008. https://doi.org/10.1016/J.IJDRR.2020.102008

Paudel, P. K., Lamichhane, A., Acharya, K. P., & Bastola, R. (2023). Ecosystem restoration reduces community vulnerability to water-induced disasters: Need to rethink Chure conservation in Nepal. International Journal of Disaster Risk Reduction, 90, 103647. https://doi.org/10.1016/J.IJDRR.2023.103647

Rachmawati, E., Umniyatun, Y., Rosyidi, M., & Nurmansyah, M. I. (2022). The roles of Islamic Faith-Based Organizations on countermeasures against the COVID-19 pandemic in Indonesia. Heliyon, 8(2), e08928. https://doi.org/10.1016/J.HELIYON.2022.E08928

Rafi, M. M., Aziz, T., & Lodi, S. H. (2018). A comparative study of disaster management information systems. Online Information Review, 42(6), 971–988. https://doi.org/10.1108/OIR-06-2016-0168

Sakya, A. E., Frederik, M. C. G., Anantasari, E., Gunawan, E., Anugrah, S. D., Rahatiningtyas, N. S., Hanifa, N. R., & Jumantini, N. N. E. (2023). Sow the seeds of tsunami ready community in Indonesia: Lesson learned from Tanjung Benoa, Bali. International Journal of Disaster Risk Reduction, 87, 103567. https://doi.org/10.1016/J.IJDRR.2023.103567

Valaei Sharif, S., Habibi Moshfegh, P., & Kashani, H. (2023). Simulation modeling of operation and coordination of agencies involved in post-disaster response and recovery. Reliability Engineering & System Safety, 235, 109219. https://doi.org/10.1016/J.RESS.2023.109219

Vishwanath, T., Shirwaikar, R. D., Jaiswal, W. M., & Yashaswini, M. (2023). Social media data extraction for disaster management aid using deep learning techniques. Remote Sensing Applications: Society and Environment, 30, 100961. https://doi.org/10.1016/J.RSASE.2023.100961

Wang, X., Zhang, X., Moman Shahzad, M., & Shi, X. (2021). Research on the disaster prevention mechanism of mega-sub controlled structural system by vulnerability analysis. Structures, 33, 4481–4491. https://doi.org/10.1016/J.ISTRUC.2021.07.036

Wardekker, A., Nath, S., & Handayaningsih, T. U. (2023). The interaction between cultural heritage and community resilience in disaster-affected volcanic regions. Environmental Science & Policy, 145, 116–128. https://doi.org/10.1016/J.ENVSCI.2023.04.008

Zar Chi Aye, Michel Jaboyedoff, Marc-Henri Derron, & Cees J. Van Westen. (2015). Prototype of a Web-based Participative Decision Support Platform in Natural Hazards and Risk Management. ISPRS International Journal of Geo-Information, 4(3), 1201–1224.

Diterbitkan

2023-07-20

Cara Mengutip

Sunarhadi, R. M. A., Setyono, P., Kusumaningrum, L., Kurniaaji, B., Ally, H., Ahsani Taqwim, M. H., Ulhaq Fil'ardiani, N., Achmad Zaky, F., & Abdul Jabbar, S. (2023). Environmental Information System for Disaster Risk Management at Kota Surakarta. Journal of Geography Science and Education, 5(1), 45–52. https://doi.org/10.32585/jgse.v5i1.4215

Terbitan

Bagian

Artikel