Ontology-Based Recommender Systems for E-Learning and Multimedia: A Systematic Literature Review Across Domains
DOI:
https://doi.org/10.32585/ijimm.v7i2.7405Abstract
The rapid expansion of digital content across various sectors has led to an overwhelming influx of data, highlighting the need for advanced recommendation systems. Traditional methods such as Collaborative Filtering (CF) and Content-Based Filtering (CBF) face limitations like data sparsity and the Cold Start problem, which affect the accuracy of recommendations. This study explores the use of ontologies in enhancing recommendation systems, aiming to overcome these challenges by providing a semantic framework for better item and user representation. A Systematic Literature Review (SLR) methodology was employed to analyze research from 2021 to 2025, focusing on the application of ontologies in e-commerce, healthcare, education, and employment. The findings demonstrate that ontologies improve recommendation relevance, diversity, and explainability, especially in addressing the Cold Start problem. However, challenges in implementation and interpretation remain. This research contributes to the field by emphasizing the potential of integrating ontologies with Knowledge Graphs (KG) and Graph Neural Networks (GNN) to create hybrid models that enhance the accuracy and transparency of recommendations, guiding future advancements in recommendation systems.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Suastika Yulia Riska, Syaad Patmanthara, Triyanna Widiyaningtyas

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with the Indonesian Journal of Instructional Media and Model agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.