Aplikasi Machine Learning Method pada Pemetaan Kerawanan Tanah Longsor di Kabupaten Karanganyar

Authors

  • Nada Hanifah Putri Sebelas Maret University
  • Raden Harya Dananjaya Universitas Sebelas Maret
  • Niken Silmi Surjandari Universitas Sebelas Maret

DOI:

https://doi.org/10.32585/modulus.v6i1.4490

Keywords:

longsor, machine learning, Voting Classifier

Abstract

Indonesia berada dalam zona iklim tropis yang rawan untuk mengalami bencana hidrometeorologi. Pemetaan kerawanan longsor merupakan salah satu upaya mitigasi yang dapat dilakukan untuk mengurangi dampak dari bencana tanah longsor. Penelitian ini bertujuan untuk membuat peta kerawanan longsor wilayah Kabupaten Karanganyar menggunakan machine learning yang diklasifikasikan menjadi lima kelas yaitu sangat rendah, rendah, sedang, tinggi, dan sangat tinggi. Metode yang digunakan untuk pembuatan model adalah Voting Classifier Ensemble Technique. Sembilan faktor pengondisi yang digunakan yaitu jarak terhadap jalan sekunder dan tersier, slope, TWI, elevasi, land use, litologi, NDVI, serta curah hujan. Algoritma machine learning didapatkan dari modul Scikit Learn. Kombinasi parameter yang digunakan yaitu pada metode Random Forest menggunakan parameter random_state = 0, n_estimators = 750, criterion = 'entropy', metode Support Vector Machine menggunakan parameter random_state = 0, Probability = True, gamma = 0.005, C = 1, metode K-Nearest Neighbors menggunakan parameter n_neighbors = 11, weights = 'distance', leaf_size = 20, dan metode Voting Classifier menggunakan parameter voting = 'soft', weights = [1,1,1] untuk parameter lain yang digunakan diatur sesuai dengan default modul. Model yang didapatkan memiliki AUC sebesar 0,9563 yang mendekati 1 sehingga dapat dikatakan bahwa model yang dimiliki performa yang baik untuk melakukan prediksi probabilitas longsor.

Downloads

Download data is not yet available.

Author Biographies

Nada Hanifah Putri, Sebelas Maret University

Program Studi Teknik Sipil, Unversitas Sebelas Maret

Raden Harya Dananjaya, Universitas Sebelas Maret

Program Studi Teknik Sipil, Unversitas Sebelas Maret

Niken Silmi Surjandari, Universitas Sebelas Maret

Program Studi Teknik Sipil, Unversitas Sebelas Maret

References

Achour, Y., & Pourghasemi, H. R. (2020). How do machine learning techniques help in increasing accuracy of landslide susceptibility maps? Geoscience Frontiers, 11(3), 871–883. https://doi.org/10.1016/j.gsf.2019.10.001

Akinci, H. (2022). Assessment of rainfall-induced landslide susceptibility in Artvin, Turkey using machine learning techniques. Journal of African Earth Sciences, 191(April), 104535. https://doi.org/10.1016/j.jafrearsci.2022.104535

Benbouras, M. A. (2022). Hybrid meta-heuristic machine learning methods applied to landslide susceptibility mapping in the Sahel-Algiers. International Journal of Sediment Research, 37(5), 601–618. https://doi.org/10.1016/j.ijsrc.2022.04.003

BNPB. (n.d.). Geoportal Data Bencana Indonesia. Diambil 9 Maret 2023, dari https://gis.bnpb.go.id/

Bragagnolo, L., Silva, R. V. d., & Grzybowski, J. M. V. (2020). Artificial neural network ensembles applied to the mapping of landslide susceptibility. Catena, 184(September 2019), 104240. https://doi.org/10.1016/j.catena.2019.104240

CDC. (2023). Jenks natural breaks classification method - Health, United States. https://www.cdc.gov/nchs/hus/sources-definitions/jenks-natural-breaks.htm

esri. (2023). Data classification methods—ArcGIS Pro | Documentation. https://pro.arcgis.com/en/pro-app/latest/help/mapping/layer-properties/data-classification-methods.htm

Fitria, I. (2021). Elimination Of Factors In Landslide Vulnerability Risk Mapping Model Based On Artificial Intelligence System.

Hammad Khaliq, A., Basharat, M., Talha Riaz, M., Tayyib Riaz, M., Wani, S., Al-Ansari, N., Ba Le, L., & Thi Thuy Linh, N. (2023). Spatiotemporal landslide susceptibility mapping using machine learning models: A case study from district Hattian Bala, NW Himalaya, Pakistan. Ain Shams Engineering Journal, 14(3), 101907. https://doi.org/10.1016/j.asej.2022.101907

Hoarau, A., Martin, A., Dubois, J. C., & Le Gall, Y. (2023). Evidential Random Forests. Expert Systems with Applications, 230(May), 120652. https://doi.org/10.1016/j.eswa.2023.120652

Khan, M. A., Iqbal, N., Imran, Jamil, H., & Kim, D. H. (2023). An optimized ensemble prediction model using AutoML based on soft voting classifier for network intrusion detection. Journal of Network and Computer Applications, 212(November 2022), 103560. https://doi.org/10.1016/j.jnca.2022.103560

Marzuki, T. (2021). REVISI Skripsi Thoriq Marzuki (30092021). Universitas Sebelas Maret.

Meinhardt, M., Fink, M., & Tünschel, H. (2015). Landslide susceptibility analysis in central Vietnam based on an incomplete landslide inventory: Comparison of a new method to calculate weighting factors by means of bivariate statistics. Geomorphology, 234, 80–97. https://doi.org/10.1016/j.geomorph.2014.12.042

Merghadi, A., Yunus, A. P., Dou, J., Whiteley, J., ThaiPham, B., Bui, D. T., Avtar, R., & Abderrahmane, B. (2020). Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance. Earth-Science Reviews, 207(September 2019), 103225. https://doi.org/10.1016/j.earscirev.2020.103225

Naji, M. A., Filali, S. El, Bouhlal, M., Benlahmar, E. H., Abdelouhahid, R. A., & Debauche, O. (2021). Breast Cancer Prediction and Diagnosis through a New Approach based on Majority Voting Ensemble Classifier. Procedia Computer Science, 191, 481–486. https://doi.org/10.1016/j.procs.2021.07.061

NASA. (2013). Earthdata Search | Earthdata Search. https://search.earthdata.nasa.gov/search

NASA. (2020). GES DISC. https://disc.gsfc.nasa.gov/

NASA. (2022). MODIS Web. https://modis.gsfc.nasa.gov/

Pham, B. T., Tien Bui, D., Prakash, I., & Dholakia, M. B. (2017). Hybrid integration of Multilayer Perceptron Neural Networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS. Catena, 149, 52–63. https://doi.org/10.1016/j.catena.2016.09.007

Priyono, K. D., Jumadi, Saputra, A., & Fikriyah, V. N. (2020). Risk analysis of landslide impacts on settlements in Karanganyar, Central Java, Indonesia. International Journal of GEOMATE, 19(73), 100–107. https://doi.org/10.21660/2020.73.34128

PT. Indonesia Geospasial Tech. (2020). √ Download Shapefile Geologi Seluruh Indonesia - INDONESIA GEOSPASIAL. https://www.indonesia-geospasial.com/2020/03/download-data-shapefile-shp-geologi-se.html

Rai, N., Kaushik, N., Kumar, D., Raj, C., & Ali, A. (2022). Mortality prediction of COVID-19 patients using soft voting classifier. International Journal of Cognitive Computing in Engineering, 3(September), 172–179. https://doi.org/10.1016/j.ijcce.2022.09.001

Sameen, M. I., Pradhan, B., Bui, D. T., & Alamri, A. M. (2020). Systematic sample subdividing strategy for training landslide susceptibility models. Catena, 187(October 2019), 104358. https://doi.org/10.1016/j.catena.2019.104358

Scikit-learn. (2023). 1.11. Ensemble methods — scikit-learn 1.2.2 documentation. https://scikit-learn.org/stable/modules/ensemble.html

Yang, C., Liu, L. L., Huang, F., Huang, L., & Wang, X. M. (2022). Machine learning-based landslide susceptibility assessment with optimized ratio of landslide to non-landslide samples. Gondwana Research, xxxx. https://doi.org/10.1016/j.gr.2022.05.012

Youssef, A. M., & Pourghasemi, H. R. (2021). Landslide susceptibility mapping using machine learning algorithms and comparison of their performance at Abha Basin, Asir Region, Saudi Arabia. Geoscience Frontiers, 12(2), 639–655. https://doi.org/10.1016/j.gsf.2020.05.010

Zhao, S., Dai, F., Deng, J., Wen, H., Li, H., & Chen, F. (2023). Insights into landslide development and susceptibility in extremely complex alpine geoenvironments along the western Sichuan–Tibet Engineering Corridor, China. Catena, 227(24), 107105. https://doi.org/10.1016/j.catena.2023.107105

Zhou, X., Wen, H., Zhang, Y., Xu, J., & Zhang, W. (2021). Landslide susceptibility mapping using hybrid random forest with GeoDetector and RFE for factor optimization. Geoscience Frontiers, 12(5), 101211. https://doi.org/10.1016/j.gsf.2021.101211

Downloads

Published

2024-08-09

Issue

Section

Artikel