Comparison of gas chromatography detectors and its application in food analysis

Authors

  • Yurika Sugiharto Universitas Ciputra Surabaya
  • Evelyn Natania Universitas Ciputra Surabaya
  • Sherlin Angelina Febriyanti Universitas Ciputra Surabaya
  • Oki Krisbianto Universitas Ciputra Surabaya

DOI:

https://doi.org/10.32585/jfap.v2i1.2250

Abstract

Gas Chromatography (GC) is an instrument used for analyzing gaseous compounds based upon differences of boiling point and polarity. The mobile phase of GC is an inert (unreactive) gas. GC consists of several components, one of them is a detector. Detector provides an electronic signal that is recorded, and component concentration shown in the chromatogram. A detector has interrelated properties to the other. The properties of the detector are considered under three main headings: (1) types of detector, (2) sensitivity, and (3) ease of operation. Ideal detector for one application is not necessarily ideal for another application. Application of GC coupled with a detector in food analysis are also informed. Detectors that are discussed are Thermal Conductivity Detector (TCD), Flame Ionization Detector (FID), Electron Capture Detector (ECD), and Mass Spectrometer (MS).

Author Biographies

Yurika Sugiharto, Universitas Ciputra Surabaya

Student of Food Technology Program

Evelyn Natania, Universitas Ciputra Surabaya

Student of Food Technology Program

Sherlin Angelina Febriyanti, Universitas Ciputra Surabaya

Student of Food Technology Program

Oki Krisbianto, Universitas Ciputra Surabaya

Lecturer of Food Technology Program

References

Andersson, J. T. (2014). Detectors. In K. Dettmer-Wilde & W. Engewald (Eds.). Practical gas chromatography: A comprehensive reference (pp. 205-247). Springer.

Aniszewski, T. (2007). Alkaloids - Secrets of life (1st ed.) Elsevier Science Ltd.

Aparicio-Ruiz, R., Garcia-Gonzales, D. L., Morales, M. T., Lobo-Prieto, A., & Romero, I. (2018). Comparison of two analytical methods validated for the determination of volatile compounds in virgin olive oil: GC-FID vs GC-MS. Talanta, 187, 133-141.

Bai, L., Smuts, J., Schenk, J., Cochran, J., & Schug, K. A. (2018). Comparison of GC-VUV, GC-FID, and comprehensive two-dimensional GC-MS for the characterization of weathered and unweathered diesel fuels. FUEL, 214, 521-527.

Bai, J., Bakerm S. M., Goodrich-Schneider, R. M., Montazeri, N., & Sarnoski, P. J. (2019). Aroma profile characterization of mahi-mahi and tuna for determining spoilage using purge and trap gas chromatography-mass spectrometry. Journal of Food Science, 84(3), 481-489.

Baiulescu, G. E., & Ilie, V. A. (2013). Stationary phases in gas chromatography. Pergamon Press.

Barbará, J. A., Nicolli, K. P., Souza-Silva, É. A., Biasoto, A. C. T., Welke, J. E.., & Zini, C. A. Volatile profile and aroma potential of tropical Syrah wines elaborated in different maturation and maceration times using comprehensive two-dimensional gas chromatography and olfactometry. Food Chemistry, 308.

Biswas, S., Mondal, R., Mukherjee, A., Sakrar, M., & Kumar, K. R. (2019). Simultaneous determination and risk assessment of fipronil and its metabolites in sugarcane, using GC-ECD and confirmation by G-MS/MS. Food Chemistry, 272, 559-567.

Breme, K., & Guggenbühl, B. (2014). Aroma profile of a red-berries yoghurt drink by HS-SPME-GC-MS-O and influence of matrix texture on volatile aroma compound release of flavored dairy products. Flavour science. Academic Press.

Budiman, H., Nuryatini, & Zuas, O. (2015). Comparison between GC-TCD and GC-FID for the determination of propane in gas mixture. Procedia Chemistry, 16, 465-472.

Bueno, M., Resconi, V. C., Campo, M. M., Ferreira, V., & Escudero, A. (2019). Development of a robust HS-SPME-GC-MS method for the analysis of solid food samples. Analysis of volatile compounds in fresh raw beef of differing lipid oxidation degrees. Food Chemistry, 281.

Buse, J., Robinson, J. L., Shyne, R., Chi, Q., Affleck, D., Duce, D., Seiden-Long, I. (2019). Rising above helium: A hydrogen carrier gas chromatography flame ionization detection (GC-FID) method for the simultaneous quantification of toxic alcohols and ethylene glycol in human plasma specimens. Clinical Biochemistry, 73, 98-104.

Coning, P. D., & Swinley, J. (2019). A practical guide to gas analysis by gas chromatography. Elsevier Science Ltd.

da Silva, G. C., da Silva, A. A. S., da Silva, L. S. N., Godoy, R. L. O., … Raices, R. S. L. (2015). Method development by GC-ECD and HS-SPME-FC-MS for beer volatile analysis. Food Chemistry, 167, 71-77.

Dressler, M. (1986). Selective gas chromatography detectors. Elsevier Science.

El-Naggar, A. Y. (2006). Factors affecting linearity and response of flame ionization detector. Petroleum Science and Technology, 24,41-50.

Farina, Y., Abdulah, M. P., Bibi, N., & Khalik, W. M. A. W. M. (2017). Determination of pesticide residues in leafy vegetables as parts per billion levels by a chemometric using GC-ECD in Cameron Highlands, Malaysia. Food Chemistry, 224, 55-61.

Freitas, S. S., Serafim, F. A. T., & Lanças, F. M. (2018). Determination of target pesticide residues in tropical fruits employing matrix solid-phase dispersion (MSPD) extraction followed by high resolution gas chromatography. Journal of the Brazilian Chemical Society, 29(5), 1140-1148.

Frink, L.A., & Armstrong, D.W. (2016). The utilisation of two detectors for the determination of water in honey using headspace gas chromatography. Food Chemistry, 205, 23-27.

Gebruers, K., Courtin, C. M., & Delcour, J. A. (2009). Quantification of Arabinoxylans and Their Degree of Branching Using Gas Chromatography. Analysis of Bioactive Components in Small Grain Cereals. American Associate of Cereal Chemists International.

Georgiou, C. A., Danezis, G. P. (2017). Food authentication: Management, analysis and regulation. Wiley Publisher.

Gill, J. M., & Hartmann, C. H. (1967). Characteristics of ionization detectors and gas chromatography electrometers. Journal of Chromatographic Science, 5(12), 605-611.

Gordon, M. H. (1990). Principles and application of gas chromatography in food analysis (1st ed.). Springer.

Hasan, M. M., Mahmud, M. R. & Islam, M. G. (2019). GC-MS analysis of bio-active compounds in ethanol extract of Putranjiva roxburghii Wall. fruit peel. Pharmacogn Journal, 11(1), 146-149.

Hill, H. H. & McMinn, D. G. (Eds.). (1992). Detectors for capillary chromatography. Wiley-Interscience.

Irawan, C., Foliatini, Hanafi, Sulistiawaty, L., & Sukiman, M. (2018). Volatile compound analysis using GC-MS, phytochemical screening and antioxidant activities of the husk of “Julang-jaling” (Archidendron bubalinum (Jack) I. C Nielsen) from Lampung, Indonesia. Pharmacogn Journal, 10(1), 92-98.

Jasim, H., Hussein, A.O., Imad, H.H., Kareem, M.A. (2015). Characterization of alkaloid constitution and evaluation of antimicrobial activity of solanum nigrum using gas chromatography mass spectrometry. Journal of Pharmacognosy and Phytotherapy, 7(4), 56-72.

Jumhawan, U., Putri, S. P., Yusianto, Bamba, T., & Fukusaki, E. (2015). Application of gas chromatography/flame ionization detector-based metabolite fingerprinting for authentication of Asian palm civet coffee (kopi luwak). Journal of Bioscience and Bioengineering, 120(5), 555-561.

Jwaili, M. (2019). Pharmaceutical application of gas chromatography. Open Journal of Applied Sciences, 9, 683-690.

Kellogg, M. D. (2017). Measurement of biological materials. In D. Robertson & G. H. Williams (Eds.). Clinical and translational science (2nd ed.). Elsevier Inc.

Lenz, C., Neubert, H., Ziesche, S., Förster, J., Koch, C., Kuipers, W., Deilmann, M., & Jurkow, D. (2016). Development and characterization of a miniaturized flame ionization detector in ceramic multilayer technology for field application. Procedia Engineering, 168, 1378-1381.

Li, D., & Liu, S. (2018). Water quality monitoring and management: Basis, technology and case studies (1st ed.). Academic Press.

Lim, D. K., Mo, C., Lee, D. K., Long, N. P., Lim, J., & Kwon, S. W. (2018). Non-destructive profiling of volatile organic compounds using HS-SPME/GC-MS and its application for the geographical discrimination of white rice. Journal of Food and Drug Analysis, 26(1), 260-267.

Lotfi, A., Navaei, M., & Hesketh, P. J. (2019). A platinum cantilever-based thermal conductivity detector for ammonia sensing using the 3-omega technique. ECS Journal of Solid State Science and Technology, 8(6).

Lovelock, J. E., & Lipsky, S. R. (1960). Electron affinity spectroscopy-A new method for the identification of functional groups in chemical compounds separated by gas chromatography. Journal of the American Chemical Society, 82(2), 431-433.

Lukyanova, O. N., Tsygankov, V. Y., & Boyarova, M. D. (2018). Organochlorine pesticides and polychlorinated biphenyls in the bering flounder (Hippoglossoides robustus) from the Sea of Okhotsk. Marine Pollution Bulletin, 137, 152-156.

Matsui, K., Ishimura, T., Mattonai, M., Iwai, I., Watanabe, A., Teramae, N., Ohtani, H., & Watanabe, C. (2020). Identification algorithm for polymer mixtures based on Py-GC/MS and its application for microplastic analysis in environmental samples. Journal of Analytical and Applied Pyrolysis.

McNair, H. M., & Miller, J. M. (2011). Basic gas chromatography (2nd ed.). John Wiley & Sons.

Mcminn, D. G. (2000). Chromatography : Gas | Detectors: General (Flame Ionization Detectors and Thermal Conductivity Detectors).

McWilliam, I. G. (2007). The comparison of detectors for gas chromatography. Journal of Applied Chemistry, 9(7), 379-388.

Milman, B. L. (2011). Chemical identification and its quality assurance. Springer.

Nasiri, A., Amirahmadi, M., Mousavi, Z., Shoeibi, S., Khajeamiri, A., & Kobarfard, F. (2016). A multi residue GC-MS method for determination of 12 pesticides in cucumber. Iranian Journal of Pharmaceutical Research, 15(4), 809-816.

Nicolli, K. P., Biasoto, A. C. T., Souza-Silva, É. A., Guerra, C. C., dos Santos, H. P., Welke, J. E., & Zini, C. A. (2018). Sensory, olfactometry and comprehensive two-dimensional gas chromatography analyses as appropriate tools to characterize the effects of vine management on wine aroma. Food Chemistry, 243, 103–117.

Obeidat, Y. (2021). The most common methods for breath acetone concentration detection: A review. IEEE Sensors Journal, 1, 1. DOI: 10.1109/JSEN.2021.3074610

Ogihara, S. (2018). GC/MS analysis of long-chain aldehydes from recent coral. American Journal of Analytical Chemistry, 9, 46-51.

Ponphaiboon, J., Limmatvapirat, S., Chaidedgumjorn, A., & Limmatvapirat, C. (2018). Optimization and comparison of GC-FID and HPLC-ELSD methods for determination of lauric acid, mono-, di-, and trilaurins in modified coconut oil. Journal of Chromatography B, 1099, 110-116.

Pontoh, J. (2016). Gas chromatographic analysis of medium chain fatty acids in coconut oil. The Journal of Pure and Applied Chemistry Research, 5(3), 157-161.

Poole, C. F. (2012). Gas chromatography (1st ed.). Elsevier Inc.

Poy, F. (1997). A new approach to the simultaneous multi-detection technique with electron capture and flame ionization in series. Journal of High Resolution Chromatography, 2(5), 243-245.

Pruksatrakul, T., Phoopraintra, P., Wilairat, P., Chaiyen, P., & Chantiwas, R. (2017). Development of a sequential injection-liquid microextraction procedure with GC-FID for analysis of short-chain fatty acids in palm oil mill effluent. Talanta, 165, 612-618.

Raafat, K. (2018). Phytochemical analysis of Juglans regia oil and kernel exploring their antinociceptive and anti-inflammatory potentials utilizing combined bio-guided GC-FID, GC-MS and HPLC analyses. Revista Brasileira de Farmacognosia, 28(3), 358-368.

Radauscher, E. (2015). Design, Fabrication, and Characterization of Carbon Nanotube Field Emission Devices for Advanced Applications. Doctoral Thesis.

Rubakhin, S. S., & Sweedler, J. V. (2010). Mass spectrometry imaging: Principles and protocol. Humana Press.

Schedl, A., Zweckmair, T., Kikul, F., Bacher, M., Rosenau, T., & Potthast, A. (2018). Pushing the limits: Quantification of chromophores in real-world paper samples by GC-ECD and EI-GC-MS. Talanta, 179.

Scortichini, S., Boarelli, M.C., Silvi, S., Fiorin, D. (2020). Development and validation of a GC-FID method for the analysis of short chain fatty acid in rat and human farces and in fermentation fluids. Journal of Chromatography B.

Scott, R. P. W. (1996). Chromatographic detectors: Design: Function, and operation. CRC Press.

Ševčík, J. (1976) Detectors in gas chromatography (1st ed.). Elsevier Science Ltd.

Skoog, D. A., Holler, F. J., & Crouch, S. R. (2017). Principles of instrumental analysis (7th ed.). Cengage Learning.

Snavely, K., & Subramaniam, B. (1998). Thermal conductivity detector analysis of hydrogen using helium carrier gas and hayesep® D columns. Journal of Chromatographic Science, 36.

Sparkman, O. D. (2000). Mass spectrometry desk reference (1st ed.). Global View Pub.

Stocka, J., Biziuk, M., & Namieśnik, J. (2016). Analysis of pesticide residue in fruits and vegetables using analytical protocol based on application of the QuEChERS technique and GC-ECD system. International Journal Global Environmental Issues, 15.

Wang, J., Gambetta, J. M., Jeffery, D. W. (2016). Comprehensive study of volatile compounds in two Australian rosé wines: Aroma extract dilution analysis (AEDA) of extracts prepared using solvent-assisted flavor evaporation (SAFE) of headspace solid-phase extraction (HS-SPE). Journal of Agricultural and Food Chemistry.

Wei, J. (2016). Mechanical engineering and control system. World Scientific.

Wheeler, T. F., Heim, J. R., LaTorre, M. R., & Janes, A. B. (1997). Mass spectral characterization of p-Nonylphenol isomers using high-resolution capillary GC-MS. Journal of Chromatographic Science, 35.

Yamagishi, H., Tohjima, Y., Mukai, H., Nojiri, Y., Miyazaki, C., & Katsumata, K. (2012). Observation of atmospheric oxygen/nitrogen ratio aboard a cargo ship using gas chromatography/thermal conductivity detector. Journal of Geophysical Research, 17.

Yin, M. K., Lim, J. S., Moon, D. M., Lee, G. H., & Lee, J. (2016). Analysis of trace impurities in neon by a customized gas chromatography. Journal of Chromatography A.

Yousefi, S. M., Shemirani, F., & Ghorbanian, S. A. (2017). Deep eutectic solvent magnetic bucky gels in developing dispersive solid phase extraction: Application for ultra trace analysis of organochlorine pesticides by GC-micro ECD using a large-volume injection technique. Talanta, 168.

Yurchenko, S., Sats, A., Poikalanen, V., & Karus, A. (2016). Method for determination of fatty acids in bovine colostrum using GC-FID. Food Chemistry, 212, 117-122.

Zao, B., Feng, F., Tian, B., Yu, Z., & Li, X. (2020). Micro thermal conductivity detector based on SOI substrate with low detection limit. Sensors and Actuators B: Chemical, 308.

Downloads

Published

2022-03-31

How to Cite

Sugiharto, Y., Natania, E., Febriyanti, S. A., & Krisbianto, O. (2022). Comparison of gas chromatography detectors and its application in food analysis. Journal of Food and Agricultural Product, 2(1), 23–36. https://doi.org/10.32585/jfap.v2i1.2250

Issue

Section

Artikel